
Nouvelle-Calédonie - novembre 2025 - sujet 2

Exercice 1 (Sécurisation des communications, représentation des données et programmation Python - 6 points)
Alice et Bob cherchent à communiquer de manière sécurisée sur un réseau ouvert à tous. Eve veille et écoute tout ce qui passe sur le
réseau. Mallory aimerait bien se faire passer pour quelqu’un d’autre. L’objectif de cet exercice est de s’intéresser à des protocoles de
chiffrements et à un protocole de signature permettant d’authentifier l’auteur d’un message.

Alice, qui ne connaît Bob que par les réseaux sociaux, aimerait lui faire parvenir de manière secrète le message m0 suivant :

m0 = 'Rendez-vous à 16h place de la liberté. Signé : Alice.'

Si Alice transmet directement ce message m0 sur le réseau, Eve, qui écoute le réseau en permanence, pourra en prendre connaissance.

Partie A : cryptographie symétrique
On se place dans le cadre d’un chiffrement symétrique avec une seule clé. On suppose disposer d’une fonction code en Python telle
que code(m, cle) permet de chiffrer et de déchiffrer un message m à l’aide de la clé cle. Cette fonction prend en paramètres
deux chaînes de caractères et renvoie une chaîne de caractères. On suppose que, pour tout message m, on a toujours : code(code(m,
cle), cle) égal à m. Ceci veut dire que l’on peut chiffrer un message à l’aide de la clé, puis le déchiffrer exactement de la même
manière à l’aide de cette même clé.

Alice effectue donc l’instruction suivante :

m1 = code(m0, cle)

Elle transmet à Bob le message m1 ainsi que la clé cle sur le réseau.

1. Donner l’instruction que doit écrire Bob pour déchiffrer le message d’Alice et affecter le résultat dans une variable m2.

Cependant, Eve dispose du message m1 ainsi que de la clé cle qui ont tous les deux été transmis sur le réseau. Elle peut donc effectuer
la même instruction que Bob et prendre connaissance du message secret.

Partie B : cryptographie asymétrique
On se place maintenant dans le cadre d’un chiffrement asymétrique avec cette fois-ci une paire clé privée/clé publique. Dans ce sys-
tème, chaque individu possède une paire de clés associées (cle1, cle2). On suppose toujours disposer d’une fonction code telle
que code(m, cle) permet de chiffrer ou déchiffrer un message m à l’aide de la clé cle. On suppose cette fois-ci que, pour tout
message m et pour toute paire de clés associées (cle1, cle2), on a toujours : code(code(m, cle1), cle2) qui est égal à
code(code(m, cle2), cle1) et qui sont tous les deux égaux à m. Ceci veut dire que lorsque l’on transforme un message à l’aide
d’une clé puis de l’autre clé associée on retrouve le message initial. On suppose que la connaissance d’une clé ne permet pas de trouver
l’autre. On suppose aussi qu’il est impossible de retrouver un message chiffré par une clé sans connaître l’autre clé.

Alice et Bob ont tous les deux généré une paire de clés associées. On note (cle1_a, cle2_a) la paire de clés d’Alice et (cle1_b,
cle2_b) la paire de clés de Bob. Alice diffuse sa clé cle1_a sur Internet mais pas sa clé cle2_a et de même Bob diffuse sa clé
cle1_b sur Internet mais pas sa clé cle2_b.

Alice effectue l’instruction suivante, en utilisant la clé cle1_b de Bob qu’elle trouve sur Internet :

m1 = code(m0, cle1_b)

Elle transmet ensuite ce message chiffré m1 sur le réseau.

2. Donner l’instruction que doit réaliser Bob pour déchiffrer le message d’Alice afin de connaître l’heure et le lieu du rendez-vous.

3. Justifier qu’il est désormais impossible pour Eve de prendre connaissance du contenu du message secret.

4. On parle de système de clé privée/clé publique. Dans l’échange précédent, indiquer quelle est la clé privée et quelle est la clé
publique.

1

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

5. Bob souhaite accuser bonne réception de ce rendez-vous et transmettre à Alice le message suivant 'Bien reçu. Rendez-vous à16h donc.',
dont Eve ne doit pas pouvoir prendre connaissance. Donner, dans l’ordre, les instructions que doivent réaliser Bob et Alice pour
sécuriser ce second envoi.

6. Expliquer pourquoi il est nécessaire d’avoir les deux clés au lieu de n’avoir que la clé privée.

Partie C : signature
Dans cette partie et la suivante, Alice et Bob ne cherchent plus à cacher le message et Alice transmet directement m0 sur le réseau sans
le chiffrer. Mallory souhaite envoyer le message suivant à Bob, en faisant croire que ce message provient d’Alice :

m3 = 'Rendez-vous à 15h rue de la dictature. Signé : Alice.'

Il intercepte le message m0 transmis par Alice sur le réseau, le supprime, et le remplace par le message m3 qu’il transmet à Bob, qui n’a
aucun moyen de savoir que le message ne provient pas d’Alice.

Pour éviter cela, on propose un protocole de signature permettant à Alice de certifier qu’un message a été écrit par elle.

Alice chiffre son message m0 avec sa deuxième clé cle2_a, c’est-à-dire elle calcule m0_s = code(m0, cle2_a) que l’on ap-
pelle la signature du message m0. Elle transmet à la fois le message m0 et sa signature m0_s sur le réseau à Bob. De manière générale,
on suppose qu’il n’est pas possible de construire m0_s à partir de m0 sans connaître la clé à l’origine de cette transformation.

7. Expliquer en quoi les informations m0, m0_s et cle1_a connues de Bob permettent de garantir à la fois que le message provient
bien d’Alice et que Mallory n’a pas pu envoyer le message m3 à Bob en se faisant passer pour Alice.

Partie D : signature par empreinte
Un des problèmes de l’approche précédente est qu’Alice doit transmettre à la fois m0 et m0_s, ce qui double globalement la taille de
chaque envoi. Pour résoudre ce problème, on va signer en utilisant une empreinte du message plutôt que le message lui-même.

On rappelle qu’un texte est représenté en machine à l’aide d’un encodage, par exemple l’encodage ASCII, que l’on supposera uti-
lisé dans cet exercice. La fonction ord en Python permet d’obtenir le code d’un caractère. Par exemple :

>>> ord('a')
97
>>> ord('b')
98
>>> ord('c')
99

On rappelle que la valeur absolue d’un nombre x, que l’on note |x| est la valeur de ce nombre sans tenir compte de son signe. On suppose
disposer de la fonction abs en Python qui calcule la valeur absolue d’un nombre passé en paramètre. Par exemple :

>>> abs(4)
4
>>> abs(-6)
6

On considère la fonction de réduction qui prend en paramètre une chaîne de caractères de longueur n et qui renvoie la somme, pour
chaque indice i entre 1 et n - 1, du produit de l’indice i et de la valeur absolue de la différence entre le code du caractère d’indice i
et celui d’indice i - 1.

On considère par exemple la chaîne de caractères s = 'abca', représentée ci-dessous avec les indices :

0 1 2 3

a b c a

Pour cette chaîne de caractères, on obtient donc la réduction suivante :

1� |98� 97| � 2� |99� 98| � 3� |97� 99| � 9

8. Donner sans justifier la réduction de la chaîne de caractères 'bac'

9. Écrire en Python une fonction reduction qui calcule l’entier correspondant à la réduction d’une chaîne de caractères. Par
exemple :

2/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

>>> reduction('abca')
9
>>> reduction(m0)
62073
>>> reduction(m3)
53681

Dans la suite, on peut utiliser la fonction str pour transformer l’entier correspondant à une réduction, en chaîne de caractères.

Alice calcule donc m0_r = str(reduction(m0)) puis m0_s = code(m0_r, cle2_a) qui est la nouvelle signature de
m0.

10. Décrire ce que doit désormais réaliser Bob pour vérifier l’authenticité du message, c’est-à-dire qu’il a bien été envoyé par Alice.

Pour réduire davantage encore la taille de la signature, on propose de n’utiliser que les dix premiers indices du message m0 dans le
calcul de la réduction plutôt que le message en entier.

11. Commenter cette approche.

Partie E : chiffrement et signature
Dans le protocole proposé dans la dernière partie, le message m0 est envoyé sans être chiffré et Eve peut en prendre connaissance.

12. Proposer un protocole qui permet à Alice d’envoyer un message à Bob de manière confidentielle en certifiant que ce message
provient bien d’elle et de manière à ce que Eve ne puisse pas en prendre connaissance. Détailler également la procédure que doit
suivre Bob pour déchiffrer le message et garantir qu’il provient d’Alice.

3/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

Exercice 2 (Bases de données, langage SQL, programmation Python et gestion de bugs - 6 points)
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

� construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR) et JOIN
... ON ;

� construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT et DELETE ;
� affiner les recherches à l’aide de DISTINCT et ORDER BY.

Un magasin de bricolage utilise une base de données constituée de quatre tables dont voici des extraits :

client

ref_client nom prenom email telephone

25123 Renaud Martine renaudm@tmail.com 0601020304

25137 Dupont Jacques dj@mail.fr 0604030201

25145 Pasteur Emile pasteur0@dmail.fr 0611121314

25149 Eiffel Franck eiffel95@popmail.fr 0614131211

25189 Kanek Elise ekanek@mail.fr 0600112233

25322 Shar Sofia shs@fmail.fr 0644332211

...

produit

ref_produit designation type prix_unitaire

85235 Marteau TAP Outillage 15.89

86782 Rouleau peinture Outillage 9.55

89363 Niveau à bulle Outillage 8.2

89552 Clous inox Visserie 4.5

89588 Sac sable Materiau 11.6

...

remise

ref_remise designation valeur date_debut date_fin

289 Client en or 25.0 2025/01/01 2025/12/31

326 Fin de serie 40.0 2025/01/01 2025/12/31

275 Jour fou 30.0 2025/03/17 2025/03/19

263 Soldes hiver 20.0 2025/01/01 2025/02/01

...

vente

ref_vente date ref_produit ref_client quantité ref_remise

25631 2025/03/16 86782 25123 2 289

25632 2025/03/16 89363 25123 1 289

25633 2025/03/17 85235 25149 1 326

25634 2025/03/18 89588 25145 5 275

...

Dans ces tables :
� l’attribut ref_client est une clé primaire de la table client ;
� l’attribut ref_produit est une clé primaire de la table produit ;
� l’attribut ref_remise est une clé primaire de la table remise ;
� l’attribut ref_vente est une clé primaire de la table vente ;
� dans la table remise, l’attribut valeur correspond au taux de remise appliqué, exprimé en pourcentage.

4/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

1. Expliquer le rôle d’une clé primaire et rappeler la contrainte dans le choix de celle-ci.

Dans la table vente, les attributs ref_produit et ref_client sont des clés étrangères qui référencent respectivement les attributs
ref_produit de la table produit et ref_client de la table client.

2. À l’aide des extraits de tables, détailler un achat d’Emile Pasteur en précisant :

� la date de son achat ;
� le ou les article(s) acheté(s) ;
� si c’est le cas, le taux de remise dont il a bénéficié.

Un nouveau client doit être entré dans la base, il s’agit de Gilles Bertaut, son email est gbertaut@fmail.fr et son numéro de
téléphone est 0641424344. Son identifiant (ref_client) dans la base sera 25345.

3. Écrire une requête SQL permettant cet ajout.

Une correction est à apporter dans la base : l’email de la cliente Shar Sofia n’a pas été correctement saisi. Voici son email correct :
shars@fmail.fr.

4. Écrire une requête SQL permettant cette mise à jour.

Dans la base de données, toutes les dates sont de type chaîne de caractères au format aaaa/mm/jj. Cela permet de comparer des dates
entre elles : par exemple l’opération '2025/04/12'< '2025/05/03' est vraie puisque la date du 12 avril 2025 est antérieure à
celle du 3 mai 2025.

5. Écrire une requête qui permet d’afficher les attributs ref_client de tous les clients ayant fait un achat à partir du 1er janvier
2025. On souhaite qu’un même client n’apparaisse qu’une seule fois dans cet affichage.

6. La tondeuse de référence 90222 vendue dans le magasin a un défaut de fabrication. Le responsable doit rappeler tous les clients
qui ont acheté cette tondeuse depuis le 15 septembre 2024, date de mise en stock des tondeuses défectueuses. Écrire une requête
qui permet d’obtenir le nom et le numéro de téléphone des clients à rappeler.

Dans cette partie on suppose que du code Python associé aux requêtes SQL est exécuté pour réaliser l’objectif souhaité. Pour cela, à
chaque table de la base de données est associé un dictionnaire Python qui porte le nom de la table.

Le dictionnaire contient les éléments suivants : cle_primaire : [attribut_1, attribut_2, ...]. L’ordre des attributs
est identique à celui des extraits de table présentés en début d’exercice.

Par exemple, pour les tables client et vente, les dictionnaires associés sont les suivants :

client = {25123: ['Renaud', 'Martine', 'renaudm@tmail.com', '0601020304'],
25137: ['Dupont', 'Jacques', 'dj@mail.fr', '0604030201'],
25145: ['Pasteur', 'Emile', 'pasteur0@dmail.fr', '0611121314'],
25149: ['Eiffel', 'Franck', 'eiffel95@popmail.fr']}

vente = {25631: ['2025/03/16', 86782, 25123, 2, 289],
25632: ['2025/03/16', 89363, 25123, 1, 289],
25633: ['2025/03/17', 85235, 25149, 1, 326],
25634: ['2025/03/18', 89588, 25145, 5, 275]}

On considère la fonction Python select_tel ci-dessous. Cette fonction est associée à une requête SQL demandant le numéro de
téléphone d’un client connaissant son attribut ref_client. Elle prend en paramètres :

� client, un dictionnaire associé à la table client ;

� ref_client, un entier correspondant à l’attribut ref_client d’un client.

Ainsi l’instruction Python select_tel(client, 25137) est associée à la requête SQL :

SELECT telephone FROM client WHERE ref_client = 25137

7. Recopier et compléter la ligne 2 du code de la fonction select_tel ci-dessous :

1 def select_tel(client, ref_client):
2 return client[...][...]

8. On considère le code de la fonction select_tel complétée. Ainsi l’exécution de l’instruction select_tel(client,
25137) renvoie le bon résultat '0604030201'. Mais l’exécution de l’instruction select_tel(client, 1234) pro-
voque l’erreur suivante : KeyError: 1234. Expliquer ce qui, concernant le dictionnaire client, est à l’origine de cette
erreur et à quelle situation pour le magasin cela correspond.

5/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

9. Recopier le code de la fonction select_tel en proposant une modification pour que la fonction renvoie None plutôt que de
provoquer une KeyError dans le cas où la situation précédente se présente.

On souhaite écrire le code de la fonction nb_produits qui prend comme paramètres :

� vente, un dictionnaire associé à la table vente ;

� ref_produit, un entier associé à l’attribut ref_produit du dictionnaire à la table vente.

Cette fonction renvoie alors le nombre total de produits de cette référence vendus. Par exemple pour connaître le nombre de « Marteau
TAP » vendu, on écrit l’instruction nb_produits (vente, 85235), où 85235 est le numéro identifiant le produit « Marteau
TAP » et vente est le dictionnaire associé à la table vente.

10. Écrire le code en Python de la fonction nb_produits

11. Dans cette question on considère que les tables de la base de données contiennent exactement ce qui est présenté dans les extraits
en début d’exercice. On exécute la requête SQL suivante :

DELETE FROM produit WHERE ref_produit = 89363

Celle-ci n’est pas exécutée et on obtient le message d’erreur foreign key constraint failed. Expliquer pourquoi il
est nécessaire que la requête demandée ne soit pas exécutée et qu’elle affiche ce message d’erreur.

On considère le code Python de la fonction associée delete_prod qui permet de supprimer un produit dont la référence est précisée.
Cette fonction prend en paramètres :

� produit, un dictionnaire associé à la table produit ;

� ref_produit, un entier correspondant à un attribut ref_produit de la table produit.

1 def delete_prod(produit, vente, ref_produit):
2 del produit[ref_produit]

12. Réécrire le code de la fonction delete_prod en faisant toutes les modifications et ajouts nécessaires pour qu’à son appel, elle
refuse la suppression du produit lorsqu’on rencontre la situation présentée à la question précédente.

6/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

Exercice 3 (Structures de données, programmation Python et graphes - 8 points)
Partie A
Le siteswap est une notation mathématique pour codifier les figures de jonglerie. Elle est aujourd’hui utilisée par des jongleurs et jon-
gleuses dans le monde entier. Beaucoup de figures sont alors simplement désignées par leur siteswap, comme par exemple 441, 7531 ou
encore 453.

On modélise le jonglage de la manière suivante : au lieu de calculer des trajectoires complexes, on considère simplement un rythme
régulier sur lequel on jongle, et une balle est lancée à chacun de ses « temps ».

Les lancers sont caractérisés par un nombre entier positif, représentant simplement le nombre de « temps » au bout duquel la balle
revient dans la main du jongleur et peut être relancée.

À un instant donné, on peut représenter ce qu’on appelle un état, c’est-à-dire une sorte de photographie des balles « en l’air ». On
notera ces états sous forme de tableaux Python, contenant des 0 et des 1. Un 0 représente un espace vide et un 1 représente une balle.

Si on considère l’état e1 = [1, 0, 0, 1, 1, 0] : son premier élément, e1[0] vaut 1, et représente donc la balle prête à
être relancée. Si e1[0] valait 0, aucune balle à relancer ne serait présente. Ensuite chaque e1[i] représente la présence ou non d’une
balle qui atterrira dans la main de la jongleuse au bout de i temps.

e1[0]

e1[1]

e1[2]

e1[3]

e1[4]

e1[5]

FIGURE 1 – Représentation de l’état e1

L’état e1 ci-dessus représente donc un instant d’une figure à 3 balles, l’une est dans la main de la jongleuse, et deux autres balles sont
plus haut, et retomberont dans la main dans respectivement 3 et 4 temps puisque e1[3] et e1[4] sont égaux à 1 et les autres à 0.

Comme l’indice maximal est de 5 dans le tableau, on dira que la hauteur maximale est 5.

Lorsque la jongleuse attrape la balle, elle va la relancer, dans un emplacement en l’air qui est « libre », car elle ne souhaite pas re-
cevoir à un moment donné deux balles en même temps.

Dans l’exemple e1 = [1, 0, 0, 1, 1, 0], la jongleuse peut effectuer un lancer de 1, un lancer de 2 ou un lancer de 5, car
les emplacements e1[1], e1[2] et e1[5] sont à 0, donc « libres ». Elle ne peut pas lancer un 3 ou un 4.

1

2

5

FIGURE 2 – Transitions possibles depuis l’état e1

7/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

Si le premier élément de l’état est à 0, cela signifie que la jongleuse n’a aucune balle dans sa main à cet instant. Elle ne peut donc pas
lancer de balle, et on appellera ça, par convention, un lancer « 0 ». Un lancer « 0 » n’est possible que dans cette situation.

1. Si on se donne l’état e2 = [1, 1, 0, 1, 0, 0] indiquer quels sont les lancers possibles.

2. Même question pour l’état e3 = [0, 1, 1, 0, 1]

3. Recopier et compléter les lignes 4, 7 et 8 du code de la fonction lancer_possible ci-dessous. Elle prend en argument un
tableau etat représentant un état et un entier lancer, et renvoie True si le lancer est possible, et False sinon.

1 def lancer_possible(etat, lancer):
2 if lancer >= len(etat) or lancer < 0:
3 return False
4 if lancer == 0 and ...
5 return False
6 if lancer > 0:
7 if etat[0] == 0 or ...
8 ...
9 return True

Lorsqu’on lance une balle, elle vient se placer là où on l’a prévu, puis la gravité fait son effet et toutes les balles redescendent d’un cran.
Ainsi, si depuis l’état e1 = [1, 0, 0, 1, 1, 0], on lance un 2, on obtient l’état [0, 0, 1, 1, 1, 0] puis l’état [0, 1,
1, 1, 0, 0] après effet de la gravité :

FIGURE 3 – Etat e1, puis lancer de 2, puis effet de gravité

4. Depuis l’état e2 = [1, 1, 0, 1, 0, 0], on effectue un lancer de 5. Donner l’état qu’on obtient après le lancer et l’effet
de la gravité.

On souhaite écrire une fonction lancer_balle qui prend en paramètres un état etat de jonglage (comme décrit ci-dessus) et un
entier positif lancer qui représente un lancer. Elle ne doit pas modifier l’état passé en paramètre, mais doit renvoyer un nouvel état
correspondant au résultat du lancer. On suppose sans le vérifier que le lancer est forcément valide.

5. Recopier et compléter la ligne 4 du code de la fonction lancer_balle ci-dessous. On peut insérer plusieurs lignes si besoin.

1 def lancer_balle(etat, lancer):
2 # copie de l'état pour ne pas le modifier
3 nouvel_etat = [balle for balle in etat]
4 ...
5 return nouvel_etat

Partie B
6. Écrire une fonction liste_lancers_possibles qui prend en paramètre un état etat et qui renvoie une liste d’entiers

correspondant à l’ensemble des lancers possibles à partir de cet état.
Par exemple :

>>> liste_lancers_possibles(e1)
[1, 2, 5]
>>> liste_lancers_possibles([0, 1, 1, 1, 0])
[0]

8/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

On souhaite maintenant générer toutes les suites de lancers possibles à partir d’un état donné, c’est-à-dire tous les lancers consécutifs
qu’on peut faire à partir de cet état. Par exemple, à partir de l’état e1 = [1, 0, 0, 1, 1, 0], on peut lancer un 1, un 2 ou un 5.
Si on a lancé un 1 on obtient l’état [1, 0, 1, 1, 0, 0] (on rappelle que cet état est obtenu après le lancer et l’effet de gravité) et
on peut lancer un 1, un 4 ou un 5. Et de même pour les états obtenus à partir de lancers 2 ou 5.

On peut alors calculer qu’à partir de e1 on peut faire les séries de lancers de longueur 2 suivants (notés sous forme de listes Py-
thon) : [1, 1], [1, 4], [1, 5], [2, 0], ou [5, 0].

On aimerait obtenir tous les lancers possibles d’une longueur donnée à partir d’un état. Pour cela on propose la méthode suivante :

� si la longueur demandée est 0, alors la seule séquence possible est la séquence vide ;

� sinon, on calcule quels sont les lancers possibles à partir de cet état. Pour chacun de ces lancers, on va :

 calculer le nouvel état obtenu ;

 chercher l’ensemble des séquences possibles à partir de ce nouvel état (d’une longueur un de moins) ;

 pour toutes ces séquences, on ajoutera le numéro du lancer au début et on la mettra dans une liste s_possibles à renvoyer

au final.

Voici la fonction calcule_sequences partiellement écrite :

1 def calcule_sequences(etat, n):
2 """ etat est un état de jonglerie, n est un entier.
3 Calcule et renvoie l'ensemble des siteswaps (listes
4 d'entiers) de longueur n qu'on peut effectuer à
5 partir de cet état."""
6 if n == 0:
7 return [[]]
8 else:
9 s_possibles = []

10 l_lancers = ...
11 for lancer in l_lancers:
12 etat2 = ...
13 s_etat2 = calcule_sequences(etat2, n-1)
14 for ... :
15 s_possibles.append([lancer] + ...)
16 return s_possibles

7. Justifier qu’il s’agit d’une fonction récursive.

8. Expliquer brièvement pourquoi elle se termine si n est un entier positif. On admet que les boucles for présentes sont bornées et
donc terminent.

9. Recopier et compléter les lignes 10, 12, 14 et 15 de cette fonction.

Partie C
Plutôt que de calculer l’ensemble des séquences possibles à partir d’un état donné, on préfère calculer d’un coup, dès le début, l’en-
semble des états et des lancers possibles.

On représentera ces données par un graphe orienté, dont les sommets sont les états, et on a un arc d’un état e à un état f si le lancer
n permet de passer de l’état e à l’état f. Dans ce cas on inscrit le n à proximité de l’arc entre e et f et on dit que c’est l’étiquette de l’arc.

On travaille donc avec un graphe orienté étiqueté.

Ce graphe est également appelé automate des états.

9/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

Voici par exemple l’automate des états des jonglages à deux balles, de hauteur maximale 4 :

01100 00110

01010

10100 10010

11000

4

0

2

3

4 0

1

4
2

0

1

3

FIGURE 4 – Ensemble des états et lancers, à deux balles et hauteur maximale 4

On a choisi de représenter les états par des chaînes de caractères : '11000' représente l’état [1, 1, 0, 0, 0] dans les parties
précédentes.

On souhaite stocker ce graphe sous forme de dictionnaire de listes d’adjacences : les clés sont les états, et les valeurs sont des listes de
tuple : le premier élément est un entier, le numéro du lancer possible, et le second est l’état qu’on obtient lorsqu’on applique ce lancer.

10. Recopier et compléter le code Python ci-dessous permettant de représenter l’automate de la figure 4 dans une variable automate.

automate = {'11000': [(3, '10100'), (2, '11000'), (4, '10010')],
'01010': [(0, '10100')],
'10100': ...,
...: [(0, '11000')],
... : ...,
... : ...}

11. Écrire le code de la fonction lancer_balle_automate qui prend en arguments un automate automate comme décrit plus
haut, un état etat et un entier lancer représentant un lancer et qui renvoie l’état obtenu lorsqu’on lance lancer depuis l’état
etat. On renvoie la chaîne vide si le lancer n’est pas possible.
Par exemple, pour l’automate de la Figure 4 :

>>> lancer_balle_automate(automate, '10010', 2)
'01100'
>>> lancer_balle_automate(automate, '11000', 1)
''

Un siteswap est une suite de lancers qui correspond à un cycle dans l’automate : autrement dit cela correspond à des lancers qu’on peut
répéter en boucle : c’est une « figure » de jonglage.

Par exemple dans le graphe de la Figure 4, la séquence 3, 1 est un siteswap : on part de l’état '11000', puis le lancer de 3 nous
amène dans l’état '10100', le lancer de 1 nous ramène dans l’état '11000' et on peut recommencer cette figure.

La séquence 1, 2, 3, 4, 0 est également un siteswap (partant de l’état '10100', les lancers successifs sont possibles et on
revient bien à l’état de départ).

La séquence 2 est également un siteswap (reste dans l’état '11000').

On souhaite écrire une fonction parcours_sequence_depart qui prend en argument un automate, un état de départ, et une
liste de lancers, et qui renvoie l’état dans lequel on arrive en suivant la séquence de lancers, ou bien None si l’un des lancers était
impossible.

10/11

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 2 Session 2025

Par exemple :

>>> parcours_sequence_depart(automate, '11000', [3, 1])
'11000'
>>> parcours_sequence_depart(automate, '10010', [4, 0])
'01100'
>>> parcours_sequence_depart(automate, '10100', [3, 4])
None

12. Écrire le code de la fonction parcours_sequence_depart. On peut utiliser la fonction lancer_balle_automate.

Grâce à la fonction précédente, il est possible de vérifier qu’un siteswap est valide, c’est-à-dire qu’il existe un état à partir duquel réaliser
la figure de jonglage.

On souhaite à présent écrire une fonction departs_siteswap qui prend en argument un automate et une liste de lancers (un potentiel
siteswap), et renvoie la liste des états de l’automate qui valide le siteswap.

Par exemple :

>>> departs_siteswap(automate, [1, 2, 3, 4, 0])
['10100']
>>> departs_siteswap(automate, [2, 1, 0])
[]

13. Écrire la fonction departs_siteswap. On peut utiliser la fonction parcours_sequence_depart, et vérifier si le sites-
wap est possible à partir de chaque état de l’automate.

11/11

