
Nouvelle-Calédonie - novembre 2025 - sujet 1

Exercice 1 (Graphes, réseaux et POO - 6 points)
Partie A
Le graphe suivant modélise un ensemble de routeurs ; les sommets sont les routeurs, les arêtes les liaisons entre ceux-ci.

B A

C

E

D F

FIGURE 1 – Schéma des routeurs et des liaisons

On désire parcourir ce graphe en largeur depuis le sommet A.
1. Dire lequel de ces parcours est un parcours en largeur en justifiant :

� ABCDEF;
� ABCEDF;
� ABCDFE.

Voici un résumé sommaire du fonctionnement du protocole RIP permettant à chaque routeur d’un réseau de taille modérée d’établir sa
table de routage :

� Règle a (règle d’initialisation). Chaque routeur initialise sa table en y ajoutant ses voisins directs. Ils sont accessibles en un saut,
sans passer par aucun routeur intermédiaire.

� Règle b (règle de transmission/réception). À intervalles de temps réguliers chaque routeur envoie sa table de routage à ses
voisins.

� Règle c (règle de mise à jour). Lorsqu’un routeur reçoit les informations d’un routeur voisin, trois cas peuvent survenir :

 une route vers un nouveau routeur lui est présentée : il l’ajoute à sa table de routage ;

 une route vers un routeur déjà connu lui est présentée, plus longue en nombre de sauts que celle inscrite dans sa table : elle

est ignorée ;

 une route vers un routeur déjà connu lui est présentée, mais strictement plus courte en nombre de sauts que la précédente :

l’ancienne est remplacée par celle-ci.
La réception par chaque routeur des tables de tous ses voisins et la mise à jour de sa table de routage en conséquence constitue une itéra-
tion du protocole. Au bout d’un petit nombre de ces itérations, plus aucune table de routage ne varie, on dit que le processus est stabilisé.

Pour tout cet exercice, on n’envisagera pas les cas problématiques dans lesquels une liaison est coupée ou un routeur tombe en panne.

On considère des routeurs A, B, C, D, E et F connectés comme indiqué sur le graphe de la figure 1.

Voici la table de routage de A à l’initialisation du protocole RIP :

Table de routage de A

routeur nombre de sauts prochain routeur

B 1 �

C 1 �

E 1 �

2. Donner la table de routage de F à l’initialisation du protocole RIP.
3. Donner la table de routage de A après une première itération de RIP (deux réponses sont possibles).
4. Donner le numéro de l’itération de RIP à partir duquel les tables des routeurs du réseau ne varient plus.

On suppose dans la question suivante que les routeurs E et F sont reliés.
5. Donner la nouvelle table de routage de A après stabilisation de RIP (deux réponses sont possibles).

1

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 1 Session 2025

Partie B
Pour simuler la situation précédente et les tables de routage, on modélise le fonctionnement d’un routeur par la classe Routeur. Chaque
instance r de la classe Routeur possède quatre attributs :

� nom : une chaîne de caractères qui identifie le routeur.

� voisins : une liste d’objets de type Routeur. Il s’agit de routeurs qui sont directement connectés au routeur r.

� nb_sauts : un dictionnaire qui associe à chaque routeur accessible depuis r le nombre de sauts nécessaires pour l’atteindre
depuis r.

� prochain : un dictionnaire qui associe à chaque routeur r_accessible, accessible depuis r, le premier routeur sur un
chemin qui mène à r_accessible, en n sauts, où n est la valeur associée à r_accessible dans nb_sauts. S’il y a un
unique saut de r à r_accessible, alors la valeur associée au routeur r_accessible est None.

Initialement, tous les routeurs sont déconnectés : l’attribut voisins est initialisé avec la liste vide, et les attributs nb_sauts et
prochain avec le dictionnaire vide :

1 class Routeur:
2 def __init__(self, nom):
3 self.nom = nom
4 self.voisins = []
5 self.nb_sauts = {}
6 self.prochain = {}

Dans le programme principal, on crée les routeurs de la manière suivante :

A = Routeur('A')
B = Routeur('B')
C = Routeur('C')
D = Routeur('D')
E = Routeur('E')
F = Routeur('F')

Ainsi que la liste des routeurs :

liste_routeurs = [A, B, C, D, E, F]

Afin de pouvoir relier les routeurs entre eux, on souhaite écrire une méthode relie, de la classe Routeur, dont on donne le code
incomplet ci-dessous. Cette méthode prend en argument le routeur self ainsi qu’un routeur autre et met à jour si nécessaire les
attributs voisins, nb_sauts et prochain des routeurs self et autre afin d’indiquer la présence d’une connexion entre ces
deux routeurs. Dans le cas où les routeurs sont déjà connectés, cette méthode ne fait rien.

1 def relie(self, autre):
2 if autre not in self.voisins:
3 self.voisins.append(...)
4 self.nb_sauts[autre] = ...
5 self.prochain[autre] = ...
6 if self not in autre.voisins:
7 autre.relie(...)

6. Recopier et compléter le code de la méthode relie.

7. Écrire la méthode relie_liste de la classe Routeur qui prend en paramètre une liste de routeurs lst et qui relie le routeur
self à chacun des routeurs de la liste lst.

Par exemple, pour relier le routeur A aux routeurs B, C et E, on exécute l’instruction A.relie_liste([B, C, E]), mais on
n’appelle pas B.relie(A) car la liaison est déjà faite

8. Écrire les instructions manquantes pour relier les routeurs de manière à obtenir le graphe de la figure 1.

D’après la règle c (règle de mise à jour) du protocole RIP, lorsqu’un routeur reçoit les informations d’un routeur voisin, il doit mettre
à jour sa table de routage. On donne ci-dessous le code incomplet de la méthode met_a_jour_table qui implémente la règle c du
protocole RIP.

2/8

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 1 Session 2025

1 def met_a_jour_table(self, autre):
2 for r in autre.nb_sauts:
3 if r != self:
4 if (r not in self.nb_sauts or self.nb_sauts[r] > ...):
5 self.nb_sauts[r] = ...
6 self.prochain[r] = ...

9. Recopier et compléter le code de la méthode met_a_jour_table ci-dessus.

10. Écrire la méthode itere_rip qui prend en paramètre le routeur self et met à jour sa table de routage lorsqu’il reçoit la table
de routage de chacun des routeurs présents dans la liste de ses voisins.

11. Écrire une fonction qui prend en paramètre une liste de routeurs l_routeurs et qui réalise une itération du protocole RIP pour
tous les routeurs de l_routeurs.

Au bout de quelques itérations, le protocole RIP converge : plus aucune table de routage du réseau n’est modifiée. On aimerait pouvoir
itérer le protocole dans le programme principal jusqu’à ce que ce soit le cas, à l’aide d’une boucle while.

On suppose que la méthode met_a_jour_table de la classe Routeur a été modifiée de telle sorte qu’elle renvoie True dans
le cas où le routeur self a procédé à une mise à jour de sa table de routage, et False sinon.

12. Écrire une version modifiée du code de la méthode itere_rip de la classe Routeur de telle sorte que celle-ci renvoie True
dans le cas où le routeur self a procédé à une modification de sa table de routage au cours de l’exécution de la méthode
itere_rip, et False sinon.

On donne ci-dessous le code du programme principal. On suppose que les instructions permettant de relier les routeurs ont été écrites à
la suite et que la situation est celle décrite dans le graphe de la figure 1.

A = Routeur('A')
B = Routeur('B')
C = Routeur('C')
D = Routeur('D')
E = Routeur('E')
F = Routeur('F')
liste_routeurs = [A, B, C, D, E, F]
instructions permettant de relier les routeurs

13. Compléter le code du programme principal afin que celui-ci mette à jour les tables de routage des routeurs présents dans la liste
liste_routeurs jusqu’à ce qu’il ne soit plus nécessaire de faire des mises à jour des tables de routage. On ne demande pas
de réécrire les instructions permettant de connecter les routeurs entre eux.

3/8

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 1 Session 2025

Exercice 2 (Bases de données, SQL et POO - 6 points)
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

� construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR), JOIN ...
ON ;

� construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT, DELETE ;

� affiner les recherches à l’aide de DISTINCT et ORDER BY.

Susie décide de créer une base de données qui recense des randonnées allant d’un parking à un lac. Elle crée trois relations représentées
sur le schéma ci-dessous (figure 1).

parking rando lac

idP idR idL

commune depart nom

altitude arrivee altitude

coord_GPS

FIGURE 1 – Schéma des trois relations

Les clés primaires sont soulignées. Dans la relation rando :

� depart est une clé étrangère qui référence l’attribut idP de la relation parking ;

� arrivee est une clé étrangère qui référence l’attribut idL de la relation lac.

L’altitude, exprimée en mètre, est un entier.

Voici un extrait des enregistrements de ces trois relations.

parking

idP commune altitude coord_GPS

1 Chamonix 1026 (45.98;6.89)

2 Argentiere 1429 (45.99;6.92)

3 Passy 600 (45.92;6.72)

4 Passy 1181 (45.95;6.71)

5 Nevache 2022 (45.05;6.52)

rando

idR depart arrivee

1 1 1

2 2 1

3 1 2

4 3 3

lac

idL nom altitude

1 Lac Blanc 2354

2 Lacs Noirs 2564

3 Lac Vert 1266

4 Lac Rouge 2585

1. Indiquer ce que renvoie la requête suivante lorsqu’on l’applique aux extraits précédents.

SELECT nom FROM lac WHERE altitude <= 2000

2. Indiquer les noms des lacs qu’on peut atteindre depuis le parking de Chamonix d’après la base de données de Susie.

À partir de maintenant, on travaille sur la totalité des enregistrements et non plus seulement sur les extraits précédents.

3. Donner une requête permettant d’obtenir les coordonnées GPS des parkings situés dans la commune de Passy à une altitude
comprise strictement entre 800 et 1 000 mètres.

4. Donner une requête permettant d’obtenir les noms des lacs qu’il est possible d’atteindre depuis le parking situé à 1 300 mètres
d’altitude dans la commune de Cordon (on admet qu’un tel parking existe dans la base de données).

4/8

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 1 Session 2025

Dans les questions suivantes, l’ordre des requêtes SQL est important. On considère une nouvelle randonnée qui part du parking dont
l’identifiant est 3 à Passy et qui conduit au lac d’Anterne situé à 2 059 mètres d’altitude. Le parking est déjà dans la base de données
mais par contre, ni la randonnée, ni le lac n’y figurent.

5. Donner les requêtes permettant à Susie d’ajouter à sa base de données cette randonnée et ce lac (on pourra utiliser l’identifiant 42
pour le lac et l’identifiant 100 pour la randonnée).

6. Susie a fait une erreur de saisie en insérant le nom du lac, elle a écrit Lc d Anterne. Donner la requête permettant de corriger
cette erreur.

7. Le parking dont l’identifiant est 28 a été transformé en un parc et n’existe plus. Donner les requêtes permettant de supprimer ce
parking de la base de données.

Susie souhaite obtenir pour chacun des parkings le nombre de randonnées qui en partent.

Elle n’a pas encore appris à le faire en SQL et décide de le faire en Python. Pour cela elle définit la classe Rando ci-dessous per-
mettant de représenter chacune des randonnées. La table rando est alors donnée par une liste d’objets de la classe Rando.

1 class Rando:
2 def __init__(self, idR, depart, arrivee):
3 self.idR =idR # identifiant de la rando
4 self.depart = depart # identifiant du parking
5 self.arrivee = arrivee # identifiant du lac

8. Recopier et compléter les lignes 3 et 5 de la fonction get_parking qui prend en paramètre une liste de randonnées et qui renvoie
la liste des identifiants des différents parkings, points de départ de ces randonnées (cette liste ne devra pas avoir de doublon).

1 def get_parking(randos):
2 parkings = []
3 for ...:
4 if rando.depart not in parkings:
5 ...
6 return parkings

Par exemple, get_parking([Rando(1, 1, 1), Rando(2, 2, 1), Rando(3, 1, 2)]) renvoie [1, 2]

9. Recopier et compléter la ligne 4 de la fonction get_nb_rando qui prend en paramètres un identifiant de parking et une liste de
randonnées, et qui renvoie le nombre de randonnées qui partent de ce parking.

1 def get_nb_rando(parking, randos):
2 nb = 0
3 for rando in randos:
4 if ...:
5 nb = nb + 1
6 return nb

Par exemple, get_nb_rando(1, [Rando(1, 1, 1), Rando(2, 2, 1), Rando(3, 1, 2)]) renvoie 2.

10. Écrire une fonction nb_rando_par_parking qui prend en paramètre une liste de randonnées et qui renvoie un dictionnaire
qui associe à chaque identifiant de parking le nombre de randonnées qui partent de ce parking.
Par exemple, nb_rando_par_parking([Rando(1, 1, 1), Rando(2, 2, 1), Rando(3, 1, 2)]) renvoie le
dictionnaire {1:2, 2:1}

5/8

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 1 Session 2025

Exercice 3 (Algorithmique, représentation binaire et programmation Python - 8 points)
Partie A : modélisation du problème
On s’intéresse à un jeu de calcul mental appelé Objectif somme. Le jeu se joue sur un plateau de 5� 5 cases. Chaque case contient un
chiffre non nul de 1 à 9. On dispose également de nombres cibles en ligne et en colonne. Le but est de trouver les cases du tableau à
vider afin d’atteindre les cibles en ligne et en colonne :

� sur chaque ligne, la somme des cases restantes doit valoir la cible de cette ligne ;

� sur chaque colonne, la somme des cases restantes doit valoir la cible de cette colonne.

De plus, il faut conserver au moins un chiffre par ligne.

Par exemple, la figure suivante représente un plateau de jeu et une solution :

7 9 2 3 2

8 6 3 5 1

7 7 3 2 7

6 4 5 8 2

8 6 8 8 4

15 13 5 2 9

13

9

12

6

4

L0

L1

L2

L3

L4

C0 C1 C2 C3 C4

0 9 2 0 2

8 0 0 0 1

7 0 3 2 0

0 4 0 0 2

0 0 0 0 4

15 13 5 2 9

13

9

12

6

4

L0

L1

L2

L3

L4

C0 C1 C2 C3 C4

FIGURE 1 – Plateau de jeu (à gauche) et une solution (à droite)

Les lignes du plateau seront nommées de L0 à L4 et les colonnes de C0 à C4. Ainsi l’exemple de la figure 1, la ligne L1 fait référence
aux valeurs 8, 6, 3, 5 et 1 du plateau et la colonne C3 fait référence aux valeurs 3, 5, 2, 8 et 8 du plateau.

Dans la suite, on suppose que les cibles sont nécessairement des entiers entre 1 et 45.

1. Expliquer pourquoi on fait cette hypothèse.

2. Donner la plus petite valeur de cible que la ligne [6, 4, 5, 8, 2] peut atteindre. Donner aussi la plus grande valeur de cible
que la ligne peut atteindre.

Dans la suite on appelle plateau une liste de 5 listes de 5 entiers. Chacune des listes de 5 entiers représente une ligne. Les entiers de ces
listes sont compris entre 0 et 9, 0 représente une case vide. Pour représenter un jeu, un plateau doit être accompagné de deux listes de 5
entiers : la liste des cibles de lignes, la liste des cibles des colonnes.

Voici une représentation en langage Python de la figure 1 :

plateau_ex = [[7, 9, 2, 3, 2],
[8, 6, 3, 5, 1],
[7, 7, 3, 2, 7],
[6, 4, 5, 8, 2],
[8, 6, 8, 8, 4]]

cibles_lignes_ex = [13, 9, 12, 6, 4]
cibles_colonnes_ex = [15, 13, 5, 2, 9]

3. Écrire une fonction extraire_ligne qui prend en paramètre un plateau et un indice i (i compris entre 0 et 4 inclus) et
renvoie la ligne Li du plateau. Par exemple, la valeur renvoyée par l’appel extraire_ligne(plateau_ex, 0) est [7,
9, 2, 3, 2]

4. Écrire une fonction extraire_colonne qui prend en paramètre un plateau et un indice i (compris entre 0 et 4 inclus) et
renvoie la colonne Ci du plateau. Par exemple, la valeur renvoyée par l’appel extraire_colonne(plateau_ex, 1) est
[9, 6, 7, 4, 6]

6/8

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 1 Session 2025

Partie B : simplification du problème
Dans la figure 1, la solution comporte des cases vides. Ces cases correspondent aux chiffres que l’on a éliminés. En langage Python, on
représentera ces cases vides par des zéros. Ainsi, pour éliminer du plateau un nombre, il suffira de le remplacer par 0.

5. Donner la représentation en langage Python du plateau de la solution proposée.

On se propose d’utiliser deux règles pour éliminer simplement certains chiffres du plateau.

Règle 1 : on remarque que les chiffres d’une ligne ou d’une colonne donnée du plateau doivent être inférieurs ou égaux à la cible.
Par exemple, pour la ligne L4 de la figure 1, la cible est 4, on peut alors éliminer tous les chiffres 8 et 6. En appliquant la règle 1, L4
devient alors [0, 0, 0, 0, 4]

6. Pour le jeu représenté à gauche sur la figure 1, donner en Python le plateau obtenu en appliquant la règle 1 à chaque ligne.

La fonction à compléter regle1 ci-dessous est une implémentation de la règle 1. Elle prend en paramètre plateau, cibles_lignes
et cibles_colonnes décrivant un jeu comme expliqué plus haut, et elle modifie plateau en appliquant la règle 1 à chaque ligne
et à chaque colonne.

1 def regle1(plateau, cibles_lignes, cibles_colonnes):
2 for i in range(5):
3 tab = extraire_ligne(plateau, i)
4 cible = ...
5 for j in range(5):
6 if tab[j] > cible:
7 plateau[i][j] = 0
8 for j in range(5):
9 tab = extraire_colonne(plateau, j)

10 cible = ...
11 for i in range(5):
12 if tab[i] > cible:
13 plateau[i][j] = 0

7. Recopier et compléter les lignes 4 et 10 pour compléter le code de la fonction regle1.

Règle 2 : s’il n’y a qu’un seul nombre impair dans une ligne ou une colonne dont la cible est paire, on peut éliminer ce nombre impair.
Par exemple, pour la ligne L3 de la figure 1, la cible est 6 et il n’y a qu’un nombre impair : 5. On peut donc éliminer ce 5.

8. Écrire une fonction un_impair qui prend comme paramètre une liste d’entiers, et qui renvoie True si la liste ne contient qu’un
seul entier impair et False sinon.

La fonction à compléter regle2 ci-dessous est une implémentation de la règle 2. Elle prend en paramètre plateau, cibles_lignes
et cibles_colonnes décrivant un jeu comme expliqué plus haut, et elle modifie plateau en appliquant la règle 2 à chaque ligne
et à chaque colonne.

9. Recopier et compléter les lignes 4, 5, 11 et 12 pour compléter le code de la fonction regle2 ci-dessous.

1 def regle2(plateau, cibles_lignes, cibles_colonnes):
2 for i in range(5):
3 ligne = extraire_ligne(plateau, i)
4 ...
5 if ...:
6 for j in range(5):
7 if plateau[i][j] % 2 == 1:
8 plateau[i][j] = 0
9 for j in range(5):

10 colonne = extraire_colonne(plateau, j)
11 ...
12 if ...:
13 for i in range(5):
14 if plateau[i][j] % 2 == 1:
15 plateau[i][j] = 0

Ces règles permettent de simplifier le jeu mais pas de le résoudre dans tous les cas. Il est nécessaire d’utiliser d’autres méthodes.

7/8

Bac NSI Nouvelle-Calédonie - novembre 2025 - sujet 1 Session 2025

Partie C : problème sur une ligne et représentation binaire
Pour aider à la résolution du jeu Objectif somme, on cherche dans cette partie à résoudre le problème sur une ligne seulement. Il s’agit
de trouver les nombres d’une liste de 5 entiers dont la somme est égale à un nombre cible.

Par exemple, une solution pour la liste [6, 4, 5, 8, 2] avec la cible 6 est de conserver le chiffre 6 uniquement. Une autre
solution est de conserver le 4 et le 2.

On représente la première solution (conserver le 6) par la liste [1, 0, 0, 0, 0]. Cela signifie que la solution choisie est uni-
quement le premier élément de la liste. La liste [1, 0, 0, 0, 0] est appelée un masque solution du problème. Le masque solution
correspondant à la solution avec le 4 et le 2, est alors [0, 1, 0, 0, 1].

10. Expliquer pourquoi [1, 1, 0, 0, 1] est un masque solution pour la liste [1, 2, 3, 5, 2] et la cible 5. Donner tous
les autres masques solutions.

11. Écrire une fonction somme qui prend comme paramètres une liste de 5 entiers et un masque (une liste de taille 5 de 0 et de 1) et
qui renvoie la somme des chiffres du tableau correspondant au masque. Par exemple, somme([1, 5, 3, 4, 8], [0, 1,
1, 0, 1]) doit renvoyer 5 + 3 + 8 = 16

On peut remarquer que les masques solutions correspondent à des nombres en écriture binaire. Par exemple, le masque [0, 1, 0,
0, 1] correspond à l’entier 9 car 0 � 16 � 1 � 8 � 0 � 4 � 0 � 2 � 1 � 1 � 9. Ainsi, on représente les masques possibles par des
nombres en écriture binaire sur 5 bits.

12. Donner la représentation binaire sur 5 bits de l’entier 26 sous la forme d’une liste de taille 5.

13. Expliquer pourquoi on ne représente que les entiers compris entre 0 et 31 sur 5 bits.

14. Écrire une fonction dec2bin qui prend comme paramètre un entier compris entre 0 et 31 et qui renvoie sa représentation binaire
sous la forme d’une liste de 5 bits. Par exemple la valeur renvoyée par l’appel dec2bin(9) est [0, 1, 0, 0, 1]

Pour résoudre le problème, on se propose de générer tous les masques possibles avec la fonction dec2bin et de tester si ce sont des
masques solutions. On stockera alors tous ces masques solutions dans une liste. On pourra utiliser la méthode append appliquée à une
liste. Cette méthode permet d’ajouter un élément en fin de liste. Par exemple, à l’issue du code suivant, la liste solutions est [1,
2] :

solutions = [] # liste vide
solutions.append(1)
solutions.append(2)

15. Écrire une fonction masques_solutions qui prend comme paramètres une liste de 5 entiers et une cible, et qui renvoie la
liste de tous les masques solutions correspondant.

Partie D : retour au jeu Objectif Somme
Finalement, on vérifie qu’un plateau proposé comme solution respecte bien les contraintes sur les lignes et les colonnes.

16. Écrire une fonction teste_solution qui prend comme paramètres un plateau, la liste des cibles des lignes, la liste des cibles
des colonnes, et qui renvoie True si les valeurs des cases restantes du plateau vérifient bien les cibles (sur chaque ligne et sur
chaque colonne), et False sinon.

8/8

