
Amérique du sud - novembre 2025 - sujet 2 (corrigé)

Exercice 1 (Bases de données, SQL, programmation Python, listes)
Partie A

1. Cette requête renvoie la table suivante :

nom

NOUMEA

2. La requête suivante convient :

SELECT nom FROM station ORDER BY nom

3. La requête suivante convient :

SELECT forceVent, dirVent FROM observation
JOIN station
ON observation.idStat = station.idStat
WHERE nom = 'BOURAKE' AND date = '2023010214'

4. La requête suivante convient :

SELECT COUNT(idObs) FROM observation

5. Le schéma relationnel de la table meteo en supprimant les données hauteur, precip, forceVent et dirVent est :

meteo(idStat : INT, nom : TEXT, latitude : REAL, longitude : REAL, idObs : INT, date
: DATE)

Partie B
6. Les commandes créent une liste à partir du fichier 'observations.csv', suppriment les noms des champs, puis transforment

les chaînes de caractères en entiers ou en flottants pour certains champs ; le résultat obtenu est une version correctement typée du
premier enregistrement de la table.

7. L’instruction nécessaire à l’utilisation du module Python math est import math

8. Le code suivant convient :

def coord(l_obs, stat_ref):
for obs in l_obs :

if obs[1] == stat_ref :
return (obs[2], obs[3])

9. L’algorithme suivant convient :

fonction liste_stations(l_obs, stat_ref, dist)
on initialise une liste vide l_ident qui contiendra la liste des identifiants
pour chaque station stat de la liste l_obs

si la distance entre stat et stat_ref est inférieure à dist
appendre l’identifiant de stat à la liste l_ident

fin si
fin pour
renvoyer l_ident

fin fonction

1



Bac NSI Amérique du sud - novembre 2025 - sujet 2 (corrigé) Session 2025

10. La fonction suivante convient :

def nettoyage(l_obs, stat_ref):
l_stations = liste_stations(l_obs, stat_ref, 2000)
l_temp = []
for obs in l_obs:

if obs[0] in l_stations:
l_temp.append(obs[9])

return l_temp

11. L’une des fonctions suivantes convient :

def moyenne(L):
return sum(L)/len(L)

def moyenne(L):
somme = 0
nombre = 0
for x in L:

somme = somme + x
nombre = nombre + 1

return somme / nombre

12. Les commandes suivantes conviennent :

>>> liste_obs = creation_liste_obs('observations.csv')
>>> liste_obs = supp_champs(liste_obs)
>>> transtype(liste_obs)
>>> L = [obs[9] for obs in liste_obs if obs[5] // 100 == 20240101 and
distance('Paris_11', obs[0]) <= 2000]
>>> moyenne(L)

2/4



Bac NSI Amérique du sud - novembre 2025 - sujet 2 (corrigé) Session 2025

Exercice 2 (Structure de pile, POO et algorithmique)
1. On peut terminer le jeu en versant le tube 4 dans le tube 3 en partant de la situation de la figure 4.

Partie A : les tubes
2. La structure de pile est une structure linéaire de type LIFO (Last-In First-Out), dont les méthodes empiler et depiler per-

mettent d’ajouter un élément au sommet et de récupérer le sommet en le supprimant de la pile, respectivement.
3. Les lignes 11 et 12 du code de la classe tube permettent d’empiler la couleur et de mettre à jour la prochaine position où on

pourra empiler une autre couleur.
4. Le code suivant convient :

def depiler(self):
if self.taille > 0:

self.taille = self.taille - 1
couleur = self.contenu[self.taille]
self.contenu[self.taille] = 0
return couleur

else:
return -1

5. La méthode suivante convient :

def est_plein(self):
return self.taille == 3

6. La méthode suivante convient :

def est_homogene(self):
if self.taille < 2:

return True
if self.contenu[1] != self.contenu[0]:

return False
if self.taille == 2:

return True
return self.contenu[2] == self.contenu[1]

7. La méthode suivante convient :

def derniere_couleur(self):
if self.taille == 0:

return -1
return self.contenu[self.taille - 1]

8. Le code suivant convient :

def verser(self, other):
while not self.est_vide() and (other.est_vide() or other.taille<3 \

and self.derniere_couleur() == other.derniere_couleur()) :
couleur = self.depiler()
other.empiler(couleur)

Partie B : le jeu
9. L’instruction tube2.verser(tube1) permet de faire passer la variable etat de la représentation en figure 2 à celle de la

représentation en figure 3.
10. La fonction suivante convient :

def gagne(etat):
for pile in etat:

if not etat.est_homogene():
return False

return True

3/4



Bac NSI Amérique du sud - novembre 2025 - sujet 2 (corrigé) Session 2025

Exercice 3 (POO, graphes et réseaux)
Partie A

1. La valeur associée à la clé 1 dans ce dictionnaire est [2, 5].

2. La fonction suivante convient :

def voisins(graphe, k):
return graphe[k]

3. La fonction suivante convient :

def degre_du_sommet(graphe, sommet):
return len(graphe[sommet])

4. La fonction suivante convient :

def degre_sommets(graphe):
return [(sommet, degre_du_sommet(graphe, sommet)) for sommet in graphe]

5. A la ligne 4, la boucle for fait varier i de 0 à len(l_deg) inclus mais les éléments de l_deg sont indexés de 0 à
len(l_deg) exclus, ce qui explique l’erreur d’index déclenché à la ligne 6 lorsque i vaut 3 dans le cas d’usage testé. Il
suffit de supprimer le +1 pour corriger l’erreur.

6. Le tri de tri_liste est un tri par sélection.

7. La fonction suivante convient :

def tri_sommets(graphe):
liste_couples = tri_liste(degre_sommets(graphe))
return [t[0] for t in liste_couples]

8. La variable coloration_sommets est un dictionnaire qui, après exécution de la boucle des lignes 7 et 8 vaut :

{1: None, 2: None, 3: None, 4: None, 5: None, 6: None, 7: None,8: None, 9: None}

9. La fonction fournit le coloriage suivant :

{1: 'Vert', 2: 'Bleu', 3: 'Rouge', 4: 'Vert', 5: 'Rouge', 6: 'Bleu', 7: 'Bleu',
8: 'Bleu', 9: 'Rouge'}

Partie B
10. La commande cp prog1.py ../travail/TP convient

11. La commande ping 190.12.10.25 convient

12. Une adresse possible pour l’ordinateur P2 est 12.128.42.42

13. Le chemin emprunté par un paquet de données allant de l’ordinateur P1 à l’ordinateur P2 est P1-S1-R1-R2-R3-R8-R9-S2-P2

14. Le protocole de routage qui semble être utilisé est RIP, puisque avec OSPF R1-R5-R6-R4-R3 serait plus court que R1-R3.

15. Les coûts pour des liaisons de 100 Mbits/s, 1 Gbits/s et 10 Gbits/s sont respectivement 108{p100 � 106q � 1, 108{109 � 0,1 et
108{p10� 109q � 0,01

16. La route qui sera empruntée par le paquet de données envoyé de l’ordinateur P1 à l’ordinateur P2, en respectant le protocole
OSPF, sera donc P1-S1-R1-R5-R6-R4-R3-R8-R9-S2-P2

4/4


