Amérique du sud - novembre 2025 - sujet 2 (corrigé)

Exercice 1 (Bases de données, SQL, programmation Python, listes)
Partie A

1. Cette requéte renvoie la table suivante :

nom

NOUMEA

2. Larequéte suivante convient :

SELECT nom FROM station ORDER BY nom

3. Larequéte suivante convient :

SELECT forceVent, dirVent FROM observation
JOIN station

ON observation.idStat = station.idStat

WHERE nom = 'BOURAKE' AND date = '2023010214'

4. Larequéte suivante convient :

SELECT COUNT (idObs) FROM observation

5. Le schéma relationnel de la table meteo en supprimant les données hauteur, precip, forceVent et dirVent est:

meteo (idStat : INT, nom : TEXT, latitude : REAL, longitude : REAL, idObs : INT, date
DATE)

Partie B

6. Les commandes créent une liste a partir du fichier ' observations.csv', suppriment les noms des champs, puis transforment
les chaines de caracteres en entiers ou en flottants pour certains champs ; le résultat obtenu est une version correctement typée du
premier enregistrement de la table.

7. L’instruction nécessaire a 1’utilisation du module Python math est import math

8. Le code suivant convient :

def coord(l_obs, stat_ref):
for obs in 1_obs
if obs[1l] == stat_ref
return (obs[2], obs[3])

9. L’algorithme suivant convient :

fonction liste_stations (l_obs, stat_ref, dist)
on initialise une liste vide 1_ident qui contiendra la liste des identifiants
pour chaque station stat de la liste 1_obs
si la distance entre stat et stat_ref est inférieure a dist
appendre 1’identifiant de stat a la liste 1_ident
fin si
fin pour
renvoyer 1_ident
fin fonction

Bac NSI

Amérique du sud - novembre 2025 - sujet 2 (corrigé)

Session 2025

10. La fonction suivante convient :

def nettoyage (1_obs,

1_temp = []
for obs in 1_obs:
if obs[0] in

return 1_temp

1l _stations = liste_stations(l_obs, stat_ref, 2000)

1_temp.append(obs([9])

stat_ref) :

1_stations:

11. L’une des fonctions suivantes convient :

def moyenne (L) :
return sum (L) /len (L)

def moyenne (L) :
0

somme =
nombre = 0
for x in L:
somme = somme + X
nombre = nombre + 1

return somme / nombre

12. Les commandes suivantes conviennent :

>>>
>>>
>>>
>>>

liste_obs = creation_liste_obs ('observations.csv')
liste_obs = supp_champs (liste_obs)
transtype (liste_obs)

L = [obs[9] for obs in liste_obs if obs[5] // 100 == 20240101 and

distance ('Paris_ 11", obs[0])
>>> moyenne (L)

<= 2000]

2/4

Bac NSI

Amérique du sud - novembre 2025 - sujet 2 (corrigé)

Exercice 2 (Structure de pile, POO

et algorithmique)

1. On peut terminer le jeu en versant le tube 4 dans le tube 3 en partant de la situation de la figure 4.

Partie A : les tubes

2. La structure de pile est une structure linéaire de type LIFO (Last-In First-Out), dont les méthodes empiler et depiler per-

mettent d’ajouter un élément au sommet et de récupérer le sommet en le supprimant de la pile, respectivement.

3. Les lignes 11 et 12 du code de la classe tube permettent d’empiler la couleur et de mettre a jour la prochaine position ol on

pourra empiler une autre couleur.

4. Le code suivant convient :

def depiler(self):

if self.taille > O:
self.taille
couleur

return couleur
else:
return -1

self.taille -
self.contenu[self.taille]
self.contenu[self.taille]

1

0

5. La méthode suivante convient :

6. La méthode suivante convient :

def est_plein(self):
return self.taille ==

3

def est_homogene (self):

if self.taille < 2:
return True

if self.contenul[l]
return False
self.taille
return True

return self.contenul2]

=

if ==

self.contenu[0]:

== self.contenull]

7. La méthode suivante convient :

def derniere_couleur (self):
0:

if self.taille
return -1

return self.contenu[self.taille

1]

8. Le code suivant convient :

def verser (self,
while not

couleur

self.est_vide ()
and self.derniere_couleur ()

other) :
and

self.depiler ()

other.empiler (couleur)

(other.est_vide ()

or other.taille<3 \
other.derniere_couleur())

Partie B : le jeu

9. L’instruction tube?2.verser (tubel) permet de faire passer la variable etat de la représentation en figure 2 a celle de la

représentation en figure 3.

10. La fonction suivante convient :

def gagne (etat):
for pile in etat:

return True

if not etat.est_homogene():
return False

3/4

Session 2025

Bac NSI Amérique du sud - novembre 2025 - sujet 2 (corrigé) Session 2025

Exercice 3 (POO, graphes et réseaux)
Partie A

1.
2.

La valeur associée a la clé 1 dans ce dictionnaire est [2, 5].

La fonction suivante convient :

def voisins (graphe, k):
return graphe[k]

. La fonction suivante convient :

def degre_du_sommet (graphe, sommet) :
return len (graphe[sommet])

La fonction suivante convient :

def degre_sommets (graphe) :
return [(sommet, degre_du_sommet (graphe, sommet)) for sommet in graphe]

. A la ligne 4, la boucle for fait varier i de 0 a len (1_deqg) inclus mais les éléments de 1_deg sont indexés de 0 a

len (1_deg) exclus, ce qui explique I’erreur d’index déclenché a la ligne 6 lorsque i vaut 3 dans le cas d’usage testé. Il
suffit de supprimer le +1 pour corriger 1’erreur.

6. Letride tri_liste estun tri par sélection.

7. La fonction suivante convient :

def tri_sommets (graphe) :
liste_couples = tri_liste (degre_sommets (graphe))
return [t[0] for t in liste_couples]

. Lavariable coloration_sommets est un dictionnaire qui, apres exécution de la boucle des lignes 7 et 8 vaut :

{1l: None, 2: None, 3: None, 4: None, 5: None, 6: None, 7: None,8: None, 9: None}

La fonction fournit le coloriage suivant :

{1: 'Vert', 2: 'Bleu', 3: 'Rouge', 4: 'Vert', 5: 'Rouge', 6: 'Bleu', 7: 'Bleu',
8: 'Bleu', 9: 'Rouge'}

Partie B

10.
11.
12.
13.
14.
15.

16.

La commande cp progl.py ../travail/TP convient

La commande ping 190.12.10.25 convient

Une adresse possible pour 1’ordinateur P2 est 12.128.42.42

Le chemin emprunté par un paquet de données allant de I’ordinateur P1 a I’ordinateur P2 est P1-S1-R1-R2-R3-R8-R9-S2-P2
Le protocole de routage qui semble étre utilisé est RIP, puisque avec OSPF R1-R5-R6-R4-R3 serait plus court que R1-R3.

Les cofits pour des liaisons de 100 Mbits/s, 1 Gbits/s et 10 Gbits/s sont respectivement 108/(100 x 10°) = 1, 108/10° = 0,1 et
10%/(10 x 10%) = 0,01

La route qui sera empruntée par le paquet de données envoyé de 1’ordinateur P1 a I’ordinateur P2, en respectant le protocole
OSPF, sera donc P1-S1-R1-R5-R6-R4-R3-R8-R9-S2-P2

4/4

