
Amérique du sud - novembre 2025 - sujet 1 (corrigé)

Exercice 1 (Bases de données, SQL, arbres binaires)
Partie A

1. L’attribut masse de la relation Exoplanetes ne peut pas servir de clé primaire de cette relation car il n’est pas unique :
plusieurs exoplanètes peuvent avoir la même masse comme, par exemplen celles d’id_exoplanete 6 et 7.

2. L’attribut id_exoplanete peut être utilisé comme clé primaire dans la relation Exoplanetes car il est unique et permet
donc d’identifier sans ambiguïté chaque exoplanète.

3. Cette requête renvoie la masse et le rayon de l’exoplanète d’identifiant 4, sous la forme de cette table :

masse rayon

0.01 0.16

4. La requête suivante convient :

SELECT id_etoile, nom FROM Etoiles WHERE ascension > 100

5. La requête suivante convient :

INSERT INTO Exoplanetes VALUES (9, 0.03, 0.37 ,4)

6. La requête suivante convient :

SELECT rayon FROM Exoplanetes
JOIN Etoiles
ON Exoplanetes.id_etoile = Etoiles.id_etoile
WHERE nom = 'Kepler-11'

Partie B
7. L’expression sorted(etoiles) vaut [(10,30), (15,20), (17, 14), (29, 21), (30, 63), (35, 13)].
8. On a l’arbre binaire suivant :

(11, 36)

(2, 35) (17, 30)

(1, 34)

9. On a l’arbre binaire de recherche suivant :

(2, 33)

(1, 33) (4, 30)

(2, 30) (8, 39)

1

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

10. Le code suivant convient :

def construction(etoiles, debut, fin):
if debut == fin:

return None
milieu = (debut + fin) // 2
sag = construction(etoiles, debut, milieu)
racine = etoiles[milieu]
sad = construction(etoiles, milieu + 1, fin)
return (sag, racine, sad)

11. La fonction suivante convient :

def en_arbre(etoiles):
return construction(etoiles, 0, len(etoiles))

12. Le code suivant convient :

def contient(arbre, position):
if arbre is None:

return False
sag, valeur, sad = arbre
if position < valeur:

return contient(sag, position)
elif position == valeur:

return True
else:

return contient(sad, position)

2/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

Exercice 2 (Systèmes d’exploitation, processus, POO)
Partie A

1. Un processus est un programme en cours d’exécution.
2. On a le schéma suivant :

prêt élu

bloqué

élection

blocagedéblocage

réveil

fin

3. La structure de données la plus adaptée pour gérer l’accès des processus au processeur selon la règle du « premier arrivé, premier
servi » est la file, qui est basée sur le principe First-In First-Out.

4. On a le schéma suivant :

Temps
0 5 10 15

P1 P1 P1 P1 P2 P2 P3 P3 P3 P3 P4 P4

5. Le processus P4 arrive à l’instant 4 et n’est élu qu’à l’instant 10 donc il a attendu 6 unités de temps.

Partie B
6. L’interblocage est la situation où plusieurs processus sont bloqués car chacun attend qu’une ressource détenue par un autre se

libère.
7. L’instruction suivante convient : navigateurs = Priority_Queue()

8. Le code suivant convient :

def sortir(self):
"""Retire et renvoie le dernier élément de
liste_priorite"""
assert not self.est_vide
return self.liste_priorite.pop()

9. Le coût en temps de la recherche dichotomique est logarithmique en la taille de la liste.
10. Le code suivant convient :

def index_insertion_element(self, element):
"""Renvoie la position/index d'insertion

d'element dans liste_priorite triée
par ordre décroissant
de numéro de priorité

"""
if self.est_vide():

return 0
else:

debut = 0
fin = len(self.liste_priorite) - 1
milieu = (debut + fin) // 2
while debut <= fin:

if self.liste_priorite[milieu][0] > element[0]:
debut = milieu + 1

elif self.liste_priorite[milieu][0] < element[0]:
fin = milieu - 1

else:
cas d'égalité de priorité
return milieu

milieu = (debut + fin) // 2
return milieu + 1

3/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

11. La méthode suivante convient :

def inserer(self, element):
"""Modifie liste_priorite en insérant

element à la position adéquate
dans l'ordre décroissant de
numéro de priorité"""

index = self.index_insertion_element(element)
self.liste_priorite.append(element)
i = len(self.liste_priorite) - 1
while i > index:

self.liste_priorite[i] = self.liste_priorite[i-1]
i = i -1

liste_priorite[index] = element

4/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

Exercice 3 (Systèmes d’exploitation, réseaux et programmation Python)
Partie A

1. Le résultat de la commande ls /association est adherents annonces

2. Il s’agit de la commande cd annonces

3. La commande cp rosier_abi.html ../adherents/abi/ crée un nouveau fichier
/association/adherents/abi/rosier_abi.html sans détruire /association/annonces/rosier_abi.html,
tandis que mv rosier_abi.html ../adherents/abi/ déplace le fichier ; dans le premier cas on a deux copies du fi-
chier, dans le deuxième cas une seule.

4. On complète la section de code que Bachir doit modifier pour répondre à l’annonce :

<h2>En échange de</h2>
<table>
<tr><td>Nom :</td><td>Bachir</td></tr>
<tr><td>Plante :</td><td>Orchidée noire Cymbidium</td></tr>
<tr><td>Lien : </td><td>Photo de l'orchidée</td></tr>
</table>

5. Si Bachir exécute les étapes 1 et 2, puis que Chen exécute les étapes 1 à 3, et enfin que Bachir l’étape 3, alors les modifications de
Chen sont supprimées.

6. On peut proposer ce nouvel algorithme :
� Etape 1 : la personne déplace l’annonce vers son répertoire personnel ;
� Etape 2 : la personne ouvre, modifie et enregistre le fichier dans son répertoire personnel ;
� Etape 3 : le fichier modifié est déplacé vers le répertoire personnel de la personne qui a proposé l’annonce.

Partie B
7. Il suffit d’ajouter l’arête Dana-Edie :

Abi

Bachir

Dana

Chen Edie

8. On a la table de routage suivante :

Table de routage de Frida

Destinataire Intermédiaire Distance

Abi Abi 1

Bachir Abi 2

Chen Abi 3

Dana Abi 2

Edie Abi 3

9. Abi, Bachir, Chen, Dana et Edie doivent ajouter la ligne suivante dans leur table de routage :

Destinataire Intermédiaire Distance

Frida Abi d� 1

où d est la distance avec Abi dans leur table de routage.
10. Voici les lignes qui doivent être modifiées.

Table de routage d’Abi

Destinataire Intermédiaire Distance

Chen Frida 2

Guy Frida 2

Table de routage de Frida

Destinataire Intermédiaire Distance

Hakim Abi 2

5/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

Partie C
11. D’après les tables de routage, on a les affirmations suivantes :

� Hakim et Janus sont amis : vrai ;
� Hakim et Ines sont amis : faux ;
� Janus et Ines sont amis : vrai.

12. On obtient le code suivant :

def amis(table):
"""renvoie la liste des intermédiaires de la table de routage, sans doublon"""
liste = []
for (intermediaire, distante) in table.values():

if intermediaire not in liste:
liste.append(intermediaire)

return liste

13. Le test de la ligne 5 du code de la fonction maj permet de vérifier si l’ami est absent de la table.

14. Le code de la ligne 6 est la suivante :

ma_table[ami] = (ami , 1)

15. Les codes des lignes 11 et 12 sont les suivantes :

if ma_table[adh][1] > distance + 1:
ma_table[adh] = (ami, distance + 1)

16. La fonction suivante convient :

def nettoie(table):
"""Supprime toute les noms qui ne sont pas joignables"""
nettoyage = []
for (adh, ligne) in table.items():

if ligne[0] == None:
nettoyage.append(adh)

for adh in nettoyage:
del table[adh]

6/6

