Amérique du sud - novembre 2025 - sujet 1 (corrigé)

Exercice 1 (Bases de données, SQL, arbres binaires)
Partie A

1. L’attribut masse de la relation Exoplanetes ne peut pas servir de clé primaire de cette relation car il n’est pas unique :
plusieurs exoplanetes peuvent avoir la méme masse comme, par exemplen celles d’i1d_exoplanete 6et7.

2. Lattribut id_exoplanete peut étre utilisé comme clé primaire dans la relation Exoplanetes car il est unique et permet
donc d’identifier sans ambiguité chaque exoplanete.

3. Cette requéte renvoie la masse et le rayon de I’exoplanete d’identifiant 4, sous la forme de cette table :

masse rayon

0.01 0.16

4. Larequéte suivante convient :

SELECT id_etoile, nom FROM Etoiles WHERE ascension > 100

5. Larequéte suivante convient :

INSERT INTO Exoplanetes VALUES (9, 0.03, 0.37 ,4)

6. Larequéte suivante convient :

SELECT rayon FROM Exoplanetes

JOIN Etoiles

ON Exoplanetes.id_etoile = Etoiles.id_etoile
WHERE nom = 'Kepler—-11"

Partie B
7. L’expression sorted (etoiles) vaut [(10,30), (15,20), (17, 14), (29, 21), (30, 63), (35, 13)1].
8. On a I’arbre binaire suivant :

9. On a I’arbre binaire de recherche suivant :

Bac NSI

Amérique du sud - novembre 2025 - sujet 1 (corrigé)

Session 2025

10. Le code suivant convient :

def construction(etoiles, debut, fin):
if debut == fin:

return None

milieu = (debut + fin) // 2

= construction(etoiles, debut, milieu)

racine = etoiles[milieu]

= construction(etoiles, milieu + 1,

return (sag, racine, sad)

fin)

11. La fonction suivante convient :

def en_arbre (etoiles):
return construction(etoiles, 0, len(etoiles))

12. Le code suivant convient :

def contient (arbre, position):

if arbre is None:
return False
sag, valeur, sad = arbre
if position < valeur:
return contient (sag, position)
elif position == valeur:
return True
else:
return contient (sad, position)

2/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

Exercice 2 (Systemes d’exploitation, processus, POO)
Partie A

1. Un processus est un programme en cours d’exécution.
2. On ale schéma suivant :

/ fin
élection
réveil — prét > élu

déblocage\ Aocage

bloqué

3. La structure de données la plus adaptée pour gérer 1’acces des processus au processeur selon la régle du « premier arrivé, premier
servi » est la file, qui est basée sur le principe First-In First-Out.

4. On a le schéma suivant :

P1 P1 Pl | P1 | P2 | P2 | P3 | P3 | P3 | P3 | P4 | P4
> Temps
0 5 10 15
5. Le processus P4 arrive a I’instant 4 et n’est élu qu’a I’instant 10 donc il a attendu 6 unités de temps.
Partie B
6. L’interblocage est la situation ou plusieurs processus sont bloqués car chacun attend qu’une ressource détenue par un autre se
libere.
7. L’instruction suivante convient : navigateurs = Priority_Queue ()

8. Le code suivant convient :

def sortir(self):
"""Retire et renvoie le dernier élément de
liste_priorite™""
assert not self.est_vide
return self.liste_priorite.pop()

9. Le cofit en temps de la recherche dichotomique est logarithmique en la taille de la liste.
10. Le code suivant convient :

def index_insertion_element (self, element) :
"""Renvoie la position/index d'insertion
d'element dans liste_priorite triée
par ordre décroissant
de numéro de priorité
if self.est_vide():
return 0

else:
debut = 0
fin = len(self.liste_priorite) - 1
milieu = (debut + fin) // 2

while debut <= fin:
if self.liste_priorite[milieu] [0] > element[0]:
debut = milieu + 1
elif self.liste_priorite[milieu] [0] < element[0]:
fin = milieu - 1
else:
cas d'égalité de priorité
return milieu
milieu = (debut + fin) // 2
return milieu + 1

3/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

11. La méthode suivante convient :

def inserer(self, element):

"""Modifie liste_priorite en insérant
element a la position adéquate
dans 1l'ordre décroissant de
numéro de priorité"""

index = self.index_insertion_element (element)
self.liste_priorite.append (element)
i = len(self.liste_priorite) - 1
while i > index:
self.liste_priorite[i] = self.liste_priorite[i-1]
i=1i -1
liste_priorite[index] = element

4/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé) Session 2025

Exercice 3 (Systemes d’exploitation, réseaux et programmation Python)
Partie A

1. Le résultat de la commande 1s /association estadherents annonces

2. 1l s’agit de la commande cd annonces

3. Lacommande cp rosier_abi.html ../adherents/abi/ crée un nouveau fichier
/association/adherents/abi/rosier_abi.html sans détruire /association/annonces/rosier_abi.html,
tandis que mv rosier_abi.html ../adherents/abi/ déplace le fichier; dans le premier cas on a deux copies du fi-

chier, dans le deuxieéme cas une seule.

4. On complete la section de code que Bachir doit modifier pour répondre a 1I’annonce :

<h2>En échange de</h2>

<table>

<tr><td>Nom :</td><td>Bachir</td></tr>

<tr><td>Plante :</td><td>Orchidée noire Cymbidium</td></tr>

<tr><td>Lien : </td><td>Photo de 1'orchidée</td></tr>
</table>

5. Si Bachir exécute les étapes 1 et 2, puis que Chen exécute les étapes 1 a 3, et enfin que Bachir I’étape 3, alors les modifications de
Chen sont supprimées.

6. On peut proposer ce nouvel algorithme :
» Etape 1 : la personne déplace 1I’annonce vers son répertoire personnel ;
» Etape 2 : la personne ouvre, modifie et enregistre le fichier dans son répertoire personnel ;
* Etape 3 : le fichier modifié est déplacé vers le répertoire personnel de la personne qui a proposé 1’annonce.

Partie B
7. 11 suffit d’ajouter 1’aréte Dana-Edie :

8. On a la table de routage suivante :

Table de routage de Frida
Destinataire | Intermédiaire | Distance
Abi Abi 1
Bachir Abi 2
Chen Abi 3
Dana Abi 2
Edie Abi 3

9. Abi, Bachir, Chen, Dana et Edie doivent ajouter la ligne suivante dans leur table de routage :

Destinataire | Intermédiaire | Distance
Frida Abi d+1

ou d est la distance avec Abi dans leur table de routage.
10. Voici les lignes qui doivent étre modifiées.

Table de routage d’ Abi
Destinataire | Intermédiaire | Distance
Chen Frida 2
Guy Frida 2

Table de routage de Frida

Destinataire | Intermédiaire | Distance
Hakim Abi 2

5/6

Bac NSI Amérique du sud - novembre 2025 - sujet 1 (corrigé)

Session 2025

Partie C
11. D’apres les tables de routage, on a les affirmations suivantes :

* Hakim et Janus sont amis : vrai;
* Hakim et Ines sont amis : faux;
* Janus et Ines sont amis : vrai.

12. On obtient le code suivant :

def amis (table):
mmn
liste = []
for (intermediaire, distante) in table.values|():
if intermediaire not in liste:
liste.append(intermediaire)
return liste

renvoie la liste des intermédiaires de la table de routage, sans doublon"""

13. Le test de la ligne 5 du code de la fonction ma j permet de vérifier si I’ami est absent de la table.

14. Le code de la ligne 6 est la suivante :

ma_table[ami] = (ami , 1)

15. Les codes des lignes 11 et 12 sont les suivantes :

if ma_table[adh] [1] > distance + 1:
ma_table[adh] = (ami, distance + 1)

16. La fonction suivante convient :

def nettoie(table):
"""Supprime toute les noms qui ne sont pas joignables"""

nettoyage = []
for (adh, ligne) in table.items():
if ligne[0] == None:

nettoyage.append (adh)
for adh in nettoyage:
del table[adh]

6/6

