
Asie - septembre 2025

Exercice 1 (Bases de données relationnelles et SQL - 6 points)
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

� construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR ), JOIN ...
ON ;

� construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT, DELETE ;

� affiner les recherches à l’aide de ORDER BY.

Pour analyser les résultats et les performances de plusieurs joueurs et joueuses de tennis d’un club, on élabore une base de données
relationnelle. Les données récoltées lors de plusieurs tournois, au fil des saisons, doivent ensuite permettre de fournir des statistiques.
Chacune des requêtes demandées devra être écrite en langage SQL.

Voici un extrait de la table joueurs dans cette base :

joueurs

id nom prenom genre

1 Durand Enzo 1

2 Panais Lise 2

3 Alpin Lucas 1

4 Benard Lisa 2

5 Benard Emma 2

Dans cette table :

� id est de type INT, cet attribut est la clé primaire de cette table ;

� nom est de type TEXT;

� prenom est de type TEXT;

� genre est de type INT (1 pour un joueur, 2 pour une joueuse).

1. Expliquer pourquoi l’attribut nom ne peut pas être choisi comme clé primaire.

2. Écrire une requête permettant d’obtenir les noms et prénoms des joueuses du club.

3. Écrire une requête permettant d’ajouter dans la table le joueur dont le prénom est Nathan et le nom est Gervais, en choisissant une
valeur pour l’identifiant id cohérente avec le reste de la base.

On s’intéresse maintenant à la table competitions, répertoriant les différents tournois auxquels ont participé les joueurs et joueuses
du club.

competitions

id nom annee

1 Open de Tours 2022

2 Tournoi de Blois 2023

3 Open de Toums 2023

4 Open de Nantes 2023

5 Open de Nantes 2021

6 Tournoi d’Angers 2024

Dans cette table :

� id est de type INT, il s’agit de la clé primaire de cette table ;

1



Bac NSI Asie - septembre 2025 Session 2025

� nom est de type TEXT;

� annee est de type INT.

4. Une faute de frappe s’est glissée dans le nom de la compétition d’identifiant 3. Écrire une requête permettant de corriger le nom
en Open de Tours.

5. Écrire une requête permettant d’obtenir la liste des noms des tournois, ainsi que leur année, en triant par année croissante.

Le lien entre ces deux tables se fait à l’aide d’une table participe. Celle-ci contient aussi les statistiques recueillies lors de cette
participation.

participe

id_joueur id_compet nb_fautes nb_gagnant aces

1 1 16 12 1

3 1 14 8 2

1 3 7 15 2

3 3 12 8 1

2 2 15 10 3

2 4 10 17 0

4 4 7 18 4

5 4 11 15 1

Dans cette table :

� id_joueur est de type INT et est une clé étrangère se rattachant à la table joueurs ;

� id_compet est de type INT et est une clé étrangère se rattachant à la table competitions ;

� nb_fautes est de type INT et donne le nombre de fautes directes faites durant le tournoi ;

� nb_gagnant est de type INT et donne le nombre de coups gagnants réalisés durant le tournoi ;

� aces est de type INT et donne le nombre de services gagnants non touchés par l’adversaire durant le tournoi ;

� la clé primaire de la table est constituée du couple des attributs id_joueur et id_compet.

6. Écrire une requête permettant d’obtenir le nom et le prénom des joueurs et des joueuses ayant obtenu un nombre de coups gagnants
strictement supérieur au nombre de fautes lors d’une compétition, la même personne pouvant apparaître plusieurs fois si elle a
rempli ces conditions lors de plusieurs compétitions.

7. Écrire une requête permettant d’obtenir le nom, le prénom des joueuses et le nom des compétitions auxquelles elles ont participé
en 2023.

8. On souhaite supprimer de la table joueurs la joueuse Emma Benard qui ne fait plus partie du club. Déterminer quelle précaution
on doit prendre avant de pouvoir le faire. Justifier.

9. Une joueuse du club, de prénom Agathe et de nom Turion, a participé au Tournoi de Blois en 2024, où elle a fait 14 fautes directes,
réalisé 15 coups gagnants et servi 2 aces. Écrire les différentes requêtes, dans le bon ordre, permettant d’insérer cette joueuse et
ses résultats dans la base, en choisissant pour identifiant pour la table joueurs la valeur 7 et pour la table competitions la
valeur 5.

2/8



Bac NSI Asie - septembre 2025 Session 2025

Exercice 2 (Réseaux, routage, graphes, programmation Python - 6 points)
Un aéroport dispose d’un réseau informatique décomposé en différents sous-réseaux :

� Navigation (N) : utilisé principalement par la tour de contrôle ;
� Guichets (G) : utilisé aux guichets dans le hall ;
� Achats (A) : utilisé sur les bornes d’achat placées dans le hall ;
� Sécurité (S) : utilisé aux contrôles de sécurité ;
� Portes (P) : utilisé au niveau des portes d’accès aux avions ;
� Bagages (B) : utilisé par les services qui gèrent le transit des bagages ;
� Commerces (C) : utilisé par tous les commerces.

Le réseau possède l’architecture suivante, où R1, R2, R3, R4, R5, R6 et R7 sont des routeurs :




N



B




P




S




C



A




G




R1




R2




R3




R4




R5




R6




R7

FIGURE 1 – Schéma du réseau

Partie A : réseau et adressage
On souhaite ajouter des machines sur le sous-réseau Commerces sur lequel sont déjà connectées 207 machines. L’adresse du sous-réseau
est 137.254.128.0 et le masque de sous-réseau utilisé est 255.255.255.0 (l’adresse IP du réseau est donc 137.254.128.0/24
en notation CIDR). On rappelle que cela signifie que les adresses IP du réseau ont toutes en commun leurs 24 premiers bits lorsque les
adresses IP sont écrites en binaire.

À part le routeur, toutes les machines déjà présentes sur le sous-réseau sont numérotées dans l’ordre croissant en partant de la plus
petite IP disponible.

1. Parmi les deux adresses IP suivantes : 137.254.128.200 et 137.254.128.210, donner l’adresse IP de la machine déjà
connectée au sous-réseau Commerces.

2. Préciser s’il est possible ou non d’ajouter 132 machines sur le sous-réseau Commerces, en justifiant la réponse.

Partie B : programmation d’un protocole de routage
Dans la suite de l’exercice, pour simplifier, on ne considère que les routeurs. Les tables de routage simplifiées sont données dans le
tableau suivant, précisant pour chaque routeur en tête de colonne, la passerelle (c’est-à-dire le routeur à contacter) correspondant au
routeur destination en début de ligne.

Source R1 R2 R3 R4 R5 R6 R7

D
es

tin
at

io
n

R1 R1 R1 R6 R2 R4 R4

R2 R2 R2 R3 R2 R5 R6

R3 R3 R3 R3 R6 R3 R4

R4 R3 R3 R4 R6 R4 R4

R5 R2 R5 R2 R6 R5 R6

R6 R2 R5 R6 R6 R6 R6

R7 R3 R3 R6 R7 R6 R7

Ainsi, selon ce tableau, si le routeur R3 reçoit des données à transmettre au routeur R5, il enverra ses données au routeur R2.
3. Donner la liste des routeurs par lesquels transite un message envoyé depuis une machine du sous-réseau Navigation à destination

d’une machine du sous-réseau Commerces.
4. Décrire le problème rencontré lorsque qu’une machine du sous-réseau Commerces envoie des données à destination d’une ma-

chine du sous-réseau Navigation.

3/8



Bac NSI Asie - septembre 2025 Session 2025

Pour éviter ce problème, on veut reconfigurer les routeurs en réécrivant leurs tables de routage à l’aide d’un programme. Pour y parvenir,
on modélisera le réseau par un graphe.

Dans toute la suite, les sommets du graphe, qui représenteront les routeurs du réseau, seront décrits par leur nom (type str) et un
graphe sera représenté par un dictionnaire associant à chaque sommet la liste des sommets qui lui sont liés par une arête.

Pour la prochaine question uniquement, on considère le réseau obtenu en se limitant aux routeurs R1, R2, R3 et R5. On obtient alors le
réseau suivant :




R1




R2




R3




R5

FIGURE 2 – Schéma du réseau restreint aux routeurs R1, R2, R3 et R5

5. Donner le dictionnaire correspondant au réseau de la Figure 2.

6. Rappeler le principe d’une fonction récursive.

Pour remplir les tables de routage en évitant le problème soulevé à la question 4, on souhaite utiliser le protocole RIP, qui minimise le
nombre de routeurs par lesquels les paquets transitent. Une première idée est de construire la liste de tous les chemins possibles reliant
ces deux routeurs puis de choisir un chemin le plus court possible dans cette liste.

On suppose que l’on dispose d’une fonction liste_chemins(graphe, r_depart, r_arrivee) qui prend en paramètres
un graphe, un routeur de départ et un routeur d’arrivée et qui renvoie la liste de tous les chemins liant les deux routeurs, les chemins
étant représentés par les listes des routeurs par lesquels passer.

En notant g le graphe écrit à la question 5, on a donc :

>>> liste_chemins(g, 'R1', 'R5'))
[['R1', 'R2', 'R5'], ['R1', 'R3', 'R2', 'R5']]

On a besoin de connaître un chemin le plus court possible entre deux routeurs en utilisant le protocole RIP.

7. Écrire une fonction plus_court_chemin(graphe, r_depart, r_arrivee) qui renvoie une liste représentant un
des plus courts chemins entre les routeurs r_depart et r_arrivee en utilisant le protocole RIP. On utilisera la fonction
liste_chemins définie à la question précédente.

L’agent responsable du réseau consulte un informaticien au sujet de cette fonction. Il lui explique que cette fonction a un défaut :
construire tous les chemins liant deux routeurs peut être long pour un réseau étendu. En effet, le nombre de chemins augmente de façon
quasi exponentielle avec le nombre de routeurs. Pour remédier à ce problème et améliorer le temps d’exécution de la recherche d’un
plus court chemin, l’informaticien lui propose d’utiliser une autre approche basée sur un parcours en largeur du graphe. En effet, avec
un tel parcours, si un chemin est trouvé, il est forcément de longueur minimale.

8. Compléter la fonction plus_court_chemin_largeur(graphe, r_depart, r_arrivee) suivante qui traduit l’idée
de l’informaticien, réalisant un parcours en largeur et dans laquelle le dictionnaire dict_chemins associe à un routeur le chemin
reliant r_depart à ce routeur.

1 def plus_court_chemin_largeur(graphe, r_depart, r_arrivee):
2 dict_chemins = {}
3 L = [r_depart]
4 sommets_marques = [r_depart]
5 dict_chemins[r_depart] = [r_depart]
6 for r in L:
7 for s_r in graphe[r]:
8 if not s_r in sommets_marques:
9 sommets_marques.append(...)

10 dict_chemins[s_r] = dict_chemins[r] + [s_r]
11 if s_r == r_arrivee :
12 return ...
13 L.append(s_r)

4/8



Bac NSI Asie - septembre 2025 Session 2025

9. Écrire alors une fonction table_routage(graphe, routeur) qui renvoie la table de routage du routeur passé en para-
mètre sous la forme d’un dictionnaire associant à chaque routeur destination la passerelle orrespondante. On pourra utiliser les
fonctions écrites dans les questions précédentes.

Partie C : utilisation du protocole OSPF
Le réseau utilise trois types de connexion :

� Ethernet (E) : débit de 10 megabits par seconde ;

� Fast Ethernet (FE) : débit de 100 megabits par seconde ;

� Fibre (F) : débit de 500 megabits par seconde.

Les types de connexion sont reportés sur la figure du réseau suivante :




R1




R2




R3




R4




R5




R6




R7

FE FE

FE

F F
F

F

F

E E

FIGURE 3 – Types de connexions du réseau

La qualité des liaisons entre les routeurs étant de natures différentes, on décide finalement d’opter pour un routage utilisant le protocole
OSPF (Open Shortest Path First). On rappelle que le protocole OSPF configure les routeurs en privilégiant les routes dont le coût total
est minimal, où le coût des connexions est donné par la formule suivante :

coût �
109

débit
,

où le débit est exprimé en bits par seconde.

10. Calculer le coût correspondant à chaque type de liaison.

11. Donner la liste des routeurs par lesquels transite un message envoyé depuis le routeur R1 à destination du routeur R7 en respectant
le protocole OSPF.

12. Recopier et compléter la table de routage du routeur R2 toujours en respectant le protocole OSPF.

Destination Suivant

R1

R2

R3

R4

R5

R6

R7

5/8



Bac NSI Asie - septembre 2025 Session 2025

Exercice 3 (Tableaux, gestion de bugs, listes, piles et POO - 8 points)
Le but de cet exercice est d’implémenter un algorithme de pseudo-tri, appelé le tri dictatorial.

L’exercice est constitué de trois parties indépendantes.

Pour chaque question, on peut considérer acquis les résultats et les fonctions demandés dans les questions précédentes, même sans
les avoir traitées.

Le pseudo-tri dictatorial d’une série d’entiers suit le principe suivant :

� s’il n’y a aucun ou un seul élément, la série est considérée comme triée et n’est donc pas modifiée ;

� sinon :


 on conserve le premier élément de la série ;

 pour chaque élément de la série à partir du deuxième :

� si l’élément est plus petit que le dernier élément conservé alors on l’élimine ;
� sinon on le conserve.

Par exemple, si on considère la série 2, 3, 1, 8 :

� on conserve le 2 qui est le premier élément ;

� le 3 n’est pas plus petit que le dernier conservé (qui est 2) donc on le conserve ;

� le 1 est plus petit que le dernier conservé (qui est 3) donc on l’élimine ;

� le 8 n’est pas plus petit que le dernier conservé (qui est toujours 3) donc on le conserve.

La série triée obtenue après cet algorithme est donc 2, 3, 8.

Partie A
Dans cette partie, on implémente le tri dictatorial en utilisant le type list de Python pour représenter une série d’entiers.

On souhaite coder une fonction tri_dictatorial qui :

� prend en paramètre une liste d’entiers serie de type list ;

� renvoie une nouvelle liste d’entiers obtenue en suivant l’algorithme présenté en introduction, c’est-à-dire une liste triée, éventuel-
lement vide, ne contenant que les éléments de serie à conserver ;

� ne modifie pas serie.

Par exemple, si s = [5, 2, 6, 8, 3, 7], l’appel tri_dictatorial(s) doitt renvoyer la liste [5, 6, 8] sans modifier
s. On remarque que la liste obtenue est en effet triée.

1. Donner le résultat que doit renvoyer l’appel tri_dictatorial([31, 45, 41, 28, 37, 108, 127, 2, 124, 421]).

2. Expliquer pourquoi le tri dictatorial n’est pas un algorithme de tri.

Edgar a écrit le programme suivant, qui prétend implémenter le tri dictatorial :

1 def tri_dictatorial(serie):
2 serie_triee = [serie[0]]
3 for i in range(1, len(serie)):
4 if serie[i] >= serie[i - 1]:
5 serie_triee.append(serie[i])
6 return serie_triee

Edgar souhaite tester si sa fonction fait bien ce qu’elle est censée faire.

3. Edgar réalise l’appel tri_dictatorial([8, 2, 9, 6, 12]). Expliquer pas à pas comment la liste serie_triee se
construit après cet appel.

4. Edgar réalise maintenant l’appel tri_dictatorial([]) et obtient l’erreur suivante :

Traceback (most recent call last):
File "tri_edgar.py", line 8, in <module>

tri_dictatorial([])
File "tri_edgar.py", line 2, in tri_dictatorial

result = [serie[0]]
IndexError: list index out of range

6/8



Bac NSI Asie - septembre 2025 Session 2025

Expliquer précisément l’erreur obtenue et proposer une modification du code d’Edgar afin que cet appel soit conforme à l’algo-
rithme du tri dictatorial décrit en introduction.

Dijkstra lors de la réception de son prix Turing en 1972, a notamment déclaré :

« Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence. »

que l’on peut traduire par

« Tester les programmes peut être un moyen très efficace d’y trouver des bugs, mais c’est un moyen désespérément inadéquat pour
prouver leur absence. »

5. Expliquer pourquoi des tests ne peuvent pas prouver de façon certaine l’absence de bugs d’un programme en général.

Edgar décide de procéder à un test supplémentaire et réalise l’appel tri_dictatorial([8, 2, 3, 5, 12]). La fonction
renvoie alors [8, 3, 5, 12] qui n’est pas une liste triée.

6. Expliquer la cause du problème et proposer une modification du code d’Edgar afin de la corriger.

Partie B
Dans cette partie, on implémente le tri dictatorial sur des listes chaînées. Cette fois-ci on va modifier la liste chaînée initiale au lieu de
construire une nouvelle liste.

On dispose d’une classe Maillon :

1 class Maillon:
2 def __init__(self, val, suiv):
3 self.valeur = val
4 self.suivant = suiv

L’attribut suivant doit correspondre à un Maillon (le suivant de self), ou à None si self est le dernier.

On dispose également d’une classe Liste qui implémente une liste chaînée avec pour unique attribut tete qui est le maillon de
tête de la liste chaînée, une instance de Maillon :

1 class Liste:
2 def __init__(self, tete):
3 self.tete = tete

On peut représenter graphiquement une liste chaînée de la manière suivante, avec la barre à hachure symbolisant la valeur None :

1

m1

0

m0

8

m8

FIGURE 1 – Liste chaînée constituée de trois maillons m1, m0 et m8

7. Donner des instructions permettant de construire les trois maillons m1, m0 et m8 et la liste chaînée représentés ci-dessus. On
nommera la liste chaînée ma_liste.

8. Indiquer ce que renvoie chacune des instructions ci-dessous :

m1.valeur == 1
m1.suivant.valeur == 8
m1.suivant.suivant == None
m1.suivant.suivant.suivant == None

9. Donner une instruction permettant de transformer ma_liste comme représentée ci-dessous :

1 0 8

7/8



Bac NSI Asie - septembre 2025 Session 2025

On souhaite à présent une fonction tri_dictatorial_chaine qui prend en paramètre une instance de liste chaînée chaine et
qui modifie cette liste chaînée démarrant en suivant l’algorithme du pseudo-tri dictatorial. La fonction ne renvoie rien.

10. Recopier et compléter la fonction tri_dictatorial_chaine ci-dessous.

1 def tri_dictatorial_chaine(chaine):
2 maillon = chaine.tete
3 while maillon.suivant ... :
4 if maillon.valeur ...
5 maillon = ...
6 else:
7 maillon.suivant = ...

Partie C
Une pile p, éventuellement vide, stocke des éléments entiers qu’on souhaite trier selon le pseudo-tri dictatorial. À l’issue du tri, on veut
que cette pile soit modifiée et ne contienne plus que des éléments triés.

11. Rappeler le principe du fonctionnement d’une pile.

12. Remettre dans l’ordre les lignes ci-dessous afin d’obtenir l’algorithme attendu, en respectant une tabulation lorsque la ligne est à
l’intérieur d’un bloc si ou tant que.

� si p n’est pas vide :


 tant que p n’est pas vide :

 tant que p2 n’est pas vide :

 on dépile p, on stocke l’élément obtenu dans la variable dernier_conservé et on l’empile dans p2 ;

 on crée une pile intermédiaire p2 vide ;

— on dépile p et on stocke l’élément obtenu dans la variable candidat ;
— si candidat est supérieure ou égal à dernier_conservé :
— on dépile p2 et on empile l’élément obtenu dans p ;

� dernier_conservé prend la valeur de candidat et on l’empile dans p2

On suppose maintenant que l’on dispose d’une classe Pile implémentant une structure de pile. L’appel help(Pile) entraîne l’affi-
chage suivant :

Help on class Pile in module __main__:
class Pile(builtins.object)
| Methods defined here:
|
| __init__(self)
|
Initialize self. See help(type(self)) for accurate
signature.
|
| __str__(self)
|
Return str(self).
|
| depiler(self)
|
| empiler(self, elt)
|
| est_vide(self)

13. Écrire en Python la fonction tri_dictatorial_pile qui prend en paramètre p une instance de Pile et modifie cette pile
afin qu’elle ne conserve que des éléments triés selon le pseudo-tri dictatorial.

8/8


