
Amérique du sud - novembre 2025 - sujet 2

Exercice 1 (Bases de données, SQL, programmation Python, listes - 6 points)
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

� construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR) et JOIN
... ON ;

� construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT et DELETE ;
� affiner les recherches à l’aide de DISTINCT et ORDER BY.

Le but de cet exercice est d’établir une prédiction de la météo du jour en utilisant les observations du jour précédent de plusieurs stations
météorologiques voisines.

Partie A
Une version simplifiée des observations peut être représentée sous forme de tables dont la description est donnée ci-dessous. Les clés
primaires ont été soulignées et les clés étrangères sont indiquées par un # :

station

idStat: INT

nom : TEXT

latitude: REAL

longitude: REAL

hauteur : REAL

observation

idObs : INT

#idStat : INT

date : TEXT('AAAAMMJJHH')

precip : REAL

forceVent : REAL

dirVent : INT

temp : REAL

FIGURE 1 – Tables
Dans cette partie, on considère les observations météorologiques de la Nouvelle-Calédonie.

� La table station contient l’identifiant idStat, le nom nom et les coordonnées géographiques de toutes les stations météoro-
logiques.

� La table observation contient l’identifiant idStat de l’observation, la date de l’observation date, la hauteur de précipitation
precip, la force du vent forceVent, la direction du vent dirVent et la température temp heure par heure de toutes les
stations.

Extrait de la table station

idStat nom latitude longitude hauteur

... ... ... ... ...

98818001 NOUMEA -22.276000 166.452833 69

98818002 MAGENTA -22.260333 166.473667 3

... ... ... ... ...

Extrait de la table observation

idObs idStat date precip forceVent dirVent temp

... ... ... ... ... ... ...

123456 98818001 2023123121 0.0 5.7 260 24.4

123457 98818001 2023123122 0.0 5.5 260 24.4

123458 98818001 2023123123 0.2 5.5 250 24.1

123459 98818002 2023010100 0.0 4.7 260 24.1

123460 98818002 2023010101 1.4 3.5 80 23.5

123461 98818002 2023010102 0.4 2.1 190 23.4

123462 98818002 2023010103 0.2 1.7 330 23.4

123463 98818002 2023123122 0.1 1.8 310 22.7

... ... ... ... ... ... ...

1



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

1. Donner le résultat de la requête ci-dessous en considérant les extraits de table fournis.

SELECT nom FROM station WHERE latitude = -22.276000 AND longitude = 166.452833

2. Écrire une requête permettant d’obtenir le nom de toutes les stations météorologiques triées par ordre alphabétique.

En SQL, la fonction d’agrégation COUNT permet de compter le nombre d’enregistrements dans une table. Pour connaître le nombre de
lignes totales dans une colonne, la syntaxe est la suivante :

SELECT COUNT(nom_colonne) FROM table

Par exemple pour compter le nombre de stations météorologiques de la Nouvelle-Calédonie, la requête est la suivante :

SELECT COUNT(idStat) FROM station

Dans la table observation, les relevés météorologiques sont effectués au même moment pour toutes les stations (date identique).
Ainsi, chaque station a le même nombre de relevés.

3. Écrire une requête permettant d’obtenir la force et la direction du vent à BOURAKE le 2 janvier 2023 à 14h.
4. Écrire une requête permettant d’obtenir le nombre total de relevés en Nouvelle-Calédonie.

On souhaite regrouper toutes les informations dans une seule table meteo.
5. Écrire le schéma relationnel de la table meteo en supprimant les données hauteur, precip, forceVent et dirVent.

Partie B
Les données collectées sont stockées dans un unique fichier texte au format csv (Comma Separated Values, valeurs séparées par des
virgules). Le module Python csv implémente des classes pour lire et écrire des données tabulaires au format csv.

On fournit ci-dessous un extrait du fichier observations.csv qui donne heure par heure les précipitations en millimètre, la force
du vent en mètre par seconde et la direction du vent en degré (de 0 à 360 degrés) ainsi que la température en degré Celsius de la journée
du 01/01/2024 pour toutes les stations météorologiques de Nouvelle-Calédonie :

FIGURE 2 – Extrait fichier observations.csv

Source : d’après meteo.data.gouv

Pour la suite de l’exercice, on dispose du code Python donné en annexe ainsi que de la documentation suivante :
� with open('mon_fichier.csv', 'r') as csvfile ouvre le fichier mon_fichier.csv en mode lecture (r) ;
� csv.reader(csvfile, delimiter=',') renvoie un objet lecteur, qui itérera sur les lignes de l’objet csvfile donné.

Chaque ligne lue depuis le fichier csv est renvoyée comme une liste de chaînes de caractères.
Dans la console, on saisit la suite d’instructions suivante

>>>liste_obs = creation_liste_obs('observations.csv')
>>>liste_obs = supp_champs(liste_obs)
>>>transtype(liste_obs)
>>>liste_obs[0]
[98801001, 'BELEP AEROD.', -19.719833, 163.661, 88, 2024010100,
0.0, 5.0, 80, 25.7]

2/11

meteo.data.gouv


Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

6. Expliquer cette liste de commande et le résultat obtenu.

Dans la suite de l’exercice, la variable liste_obs est initialisée avec les valeurs du fichier observations.csv. La fonction
distance renvoie la distance entre deux points définis par leur latitude et leur longitude. Cette fonction utilise des fonctions du
module Python math.

7. Donner la ligne de commande nécessaire à l’utilisation du module Python math.

On rappelle les informations relatives à une observations sont données dans l’ordre suivant :
ID_STATION,NOM_STATION,LATITUDE,LONGITUDE,ALTITUDE,AAAAMMJJHH,PRECIPITATION,FORCE_VENT,
DIR_VENT,TEMPERATURE

8. Compléter les lignes 42 et 43 de la fonction coord, qui prend en paramètres une liste d’observations l_obs et un nom de station
stat_ref, et qui renvoie un tuple composé de sa latitude et sa longitude.

On considère la fonction liste_stations qui prend en paramètres une liste d’observations l_obs, un nom de station stat_ref
et un flottant dist et qui renvoie la liste des identifiants ID_STATION des stations données dans la liste l_obs situées à une distance
inférieure à dist de la station de référence stat_ref.

9. Écrire un algorithme en pseudo-code de la fonction liste_stations.

10. Écrire une fonction nettoyage qui prend en paramètres une liste d’observations l_obs et station de référence stat_ref
(nom de la station), et qui renvoie la liste des températures des stations données dans la liste d’observations l_obs situées à une
distance inférieure à 2000 unités de la station de référence stat_ref.

11. Écrire la fonction moyenne qui calcule et renvoie la moyenne de toutes les valeurs de type float contenues dans la liste passée en
paramètre.

On considère maintenant le fichier observations2.csv donnant heure par heure les observations de la journée du 01/01/2024 pour
toutes les stations météorologiques de France.

12. Donner les commandes permettant d’obtenir la moyenne des températures des stations situées à moins de 2000 unités de la station
Paris_11 le 1 janvier 2024.

ANNEXE

1 import csv
2
3 def creation_liste_obs(fichier) :
4 liste_obs=[]
5 with open(fichier,'r') as csvfile:
6 fic=csv.reader(csvfile,delimiter=',')
7 for ligne in fic:
8 liste_obs.append(ligne)
9 return liste_obs

10
11 def supp_champs(L) :
12 res = []
13 for i in range(1,len(L)):
14 res.append(L[i])
15 return res
16
17 def transtype(L):
18 i=0
19 while i < len(L):
20 L[i] = [int(L[i][0]),
21 L[i][1],
22 float(L[i][2]),
23 float(L[i][3]),
24 int(L[i][4]),
25 int(L[i][5]),
26 float(L[i][6]),
27 float(L[i][7]),
28 int(L[i][8]),
29 float(L[i][9])]
30 i = i + 1

3/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

31 def distance(p1, p2):
32 """Renvoie la distance entre deux points définis par leu
33 latitude et leur longitude. p1 et p2 sont des tuples
34 (latitude,longitude)"""
35 # Cette fonction n'est pas à compléter
36
37 def coord(l_obs , stat_ref):
38 """Renvoie la latitude et la longitude données dans la
39 liste dobservation l_obs de la station stat_ref"""
40 # Cette fonction est à compléter à la question 8.
41 for obs in l_obs :
42 if ... :
43 return ...,...
44
45 def liste_stations(l_obs, stat_ref, dist):
46 """Renvoie la liste des identifiants ID_STATION des
47 stations données dans la liste l_obs situées à une distance
48 inférieure à dist de la station de référence stat_ref"""
49 # Cette fonction n'est pas à compléter
50
51 def nettoyage(l_obs, stat_ref):
52 """Renvoie la liste des températures des stations données
53 dans la liste dobservations l_obs situées à une distance
54 inférieure à 2000 unités de la station de référence
55 stat_ref."""
56 # Cette fonction est à compléter à la question 10.
57
58 def moyenne(L):
59 """Calcule et renvoie la moyenne de tous les nombres
60 contenus dans la liste passée en paramètre. L est une liste de
61 flottants."""
62 # Cette fonction est à compléter à la question 11.

4/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

Exercice 2 (Structure de pile, POO et algorithmique - 6 points)
Défi Tubes est un jeu à un joueur. Le joueur dispose de 4 tubes. Chaque tube peut contenir de 0 à 3 phases. Chaque phase possède
une couleur. Il y a 3 couleurs possibles. On peut s’imaginer ces phases comme des palets de couleur dans le tube. Pour modéliser les
couleurs, on utilisera les entiers 1, 2 et 3. Lorsqu’un tube contient 0 phase, on dit que le tube est vide. Lorsqu’il en a 3, on dit qu’il est
plein. Lorsqu’un tube n’est pas vide, sa dernière couleur est la couleur de sa phase supérieure.

phases

dernière couleur1

1

2

FIGURE 1 – Exemple de tube

Le jeu Défi Tube consiste à verser successivement la dernière couleur des tubes dans les autres tubes avec les contraintes suivantes :

� on ne peut rien verser dans un tube plein ;

� pour verser un tube 1 dans un tube 2, il faut que la dernière couleur du tube 1 soit la même que celle du tube 2 ou que le tube 2
soit vide. Dans ces deux cas, on retire la dernière couleur du tube 1 pour qu’elle devienne la dernière couleur du tube 2. On réitère
cela tant que la dernière couleur du tube 1 est la même et que le tube 2 n’est pas plein.

Le jeu se termine lorsque 3 des 4 tubes sont pleins et que leurs 3 phases sont de même couleur.

Les figures 2, 3, 4 et 5 ci-après représentent un exemple de partie du jeu Défi Tube.

tube 1 tube 2 tube 3 tube 4

1

3

3

3

2

2

2

1

1

FIGURE 2 – État initial du jeu

tube 1 tube 2 tube 3 tube 4

1

3

3

3

2

2

2

1

1

FIGURE 3 – On a versé le tube 1 dans le tube 2

5/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

tube 1 tube 2 tube 3 tube 4

1

3

3

3

2

2

2

1

1

FIGURE 4 – On a versé le tube 4 dans le tube 1

tube 1 tube 2 tube 3 tube 4

1

3

3

3

2

2

2

1

1

FIGURE 5 – On a versé le tube 3 dans le tube 4

À la figure 5, la partie est terminée.
1. Donner un exemple d’une autre séquence de versements permettant de terminer le jeu en partant de la situation de la figure 4.

Ainsi le déroulement du jeu n’est pas unique.

Partie A : les tubes
Pour modéliser le jeu Défi Tube, chaque tube sera représenté par une pile finie de taille maximale 3. Les tubes sont modélisés par des
objets de la classe tube dont le code est donné ci-dessous.

1 class tube:
2 def __init__(self):
3 self.taille = 0
4 self.contenu = [0, 0, 0]
5
6 def est_vide(self):
7 return self.taille == 0
8
9 def empiler(self, couleur):

10 if self.taille < 3:
11 self.contenu[self.taille] = couleur
12 self.taille = self.taille + 1
13
14 def depiler(self):
15 if self.taille > 0:
16 self.taille = self.taille - 1
17 couleur = self.contenu[...]
18 self.contenu[self.taille] = 0
19 return ...
20 else:
21 return ...

Chaque instance de la classe tube a deux attributs :
� l’attribut taille représente le nombre d’éléments non nuls dans le tube ;
� l’attribut contenu représente la liste (de taille 3) des éléments du tube. Lorsqu’une phase n’est pas vide, elle contiendra une

couleur 1, 2, ou 3. Lorsqu’une phase est vide, sa valeur est 0.

6/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

Par exemple, le tube suivant :

3

1

FIGURE 6 – tube 1

sera modélisé avec la classe tube par le code :

t = tube()
t.taille = 2
t.contenu = [1, 3, 0]

2. Expliquer ce qu’est la structure de pile en précisant ce que sont les méthodes empiler et depiler.
3. Expliquer les lignes 11 et 12 du code de la classe tube.
4. Recopier et compléter le code de la méthode depiler précédente. Lorsque le tube est vide, la méthode depiler doit renvoyer

-1.
5. Écrire une méthode est_plein de la classe tube. Cette méthode renvoie True si le tube est plein et False si le tube n’est

pas plein.
6. Écrire une méthode est_homogene de la classe tube qui renvoie True si le tube est plein et si son contenu est composé de

trois fois la même couleur, et qui renvoie False sinon.
7. Écrire une méthode derniere_couleur de la classe tube qui renvoie le numéro de la dernière couleur du tube. Si le tube est

vide, la méthode renverra la valeur -1.

Le code incomplet d’une méthode verser de la classe tube est donné ci-dessous :

1 def verser(self, other):
2 while ...
3 couleur = self.depiler()
4 other.empiler(couleur)

8. Recopier et compléter le code de cette méthode verser afin de verser l’instance self de la classe tube dans l’instance other.
On veillera à vérifier toutes les conditions nécessaires au bon déroulement de cette opération.

Partie B : le jeu
Pour modéliser le jeu, on appellera état du jeu une liste de 4 tubes. Le code suivant permet de représenter l’état de la figure 2.

tube1 = tube()
tube1.contenu = [1, 3, 0]
tube1.taille = 2
tube2 = tube()
tube2.contenu = [3, 3, 0]
tube2.taille = 2
tube3 = tube()
tube3.contenu = [2, 2, 0]
tube3.taille = 2
tube4 = tube()
tube4.contenu = [1, 1, 2]
tube4.taille = 3
etat = [tube1, tube2, tube3, tube4]

9. En utilisant la méthode verser et la variable etat représentant la figure 2, écrire un code permettant de faire passer la variable
etat de la représentation en figure 2 à celle de la figure 3.

10. Écrire une fonction gagne qui prend comme argument un état et qui renvoie True si la partie est terminée et False sinon.

7/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

Exercice 3 (POO, graphes et réseaux - 8 points)
Partie A
On considère un réseau d’antennes radios, représenté dans la figure 1, où les disques représentent la zone d’émission de chaque antenne.
Pour éviter toute interférence, deux antennes « proches » géographiquement doivent émettre à des fréquences différentes.

FIGURE 1 – Réseau d’antennes

On modélise ainsi le réseau d’antennes par un graphe non orienté, appelé graphe d’interférences, dont les sommets sont les antennes
numérotées de 1 à n, n étant un entier naturel supérieur ou égal à 1, et les sommets sont reliés par une arête si leurs zones d’émission
s’intersectent.

Soit G le graphe associé au réseau d’antennes précédent :

1 2
3

45

67

8

9

FIGURE 2 – Modélisation du réseau sous la forme d’un graphe G

Les fréquences à allouer sont associées à des couleurs comme rouge, vert, jaune, bleu, etc. Pour éviter les interférences, la coloration
doit être une coloration propre : deux sommets adjacents ne peuvent recevoir la même couleur.

Dans cet exercice, on représente le graphe G par un dictionnaire de listes d’adjacence dont les clefs sont les sommets de type int et
les valeurs sont des listes de voisins du sommet clef, chaque liste contenant des éléments de type int.

1. Donner la valeur associée à la clé 1 dans ce dictionnaire.
2. Écrire une fonction voisins, qui prend en paramètres un dictionnaire et un entier, telle que voisins(graphe, k) renvoie

une liste contenant les voisins du sommet k dans le graphe qui est modélisé par le dictionnaire de listes d’adjacence graphe.
Par exemple :

>>> voisins(G, 2)
[1, 3, 4, 5]

L’algorithme de Welsh et Powell consiste à colorer séquentiellement le graphe en visitant les sommets par ordre de degrés décroissants.
Le degré d’un sommet d’un graphe non orienté est le nombre d’arêtes dont le sommet est une extrémité. L’idée est que les sommets
ayant beaucoup de voisins sont plus difficiles à colorer : il faut les colorier en premier.

3. Écrire la fonction degre_du_sommet qui prend en paramètres un graphe modélisé par le dictionnaire de listes d’adjacence
graphe et un sommet sommet et qui renvoie le degré du sommet sommet.
Par exemple :

>>> degre_du_sommet(G, 2)
4

8/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

4. Écrire la fonction degre_sommets qui prend en paramètre un graphe modélisé par le dictionnaire de listes d’adjacence graphe
et qui renvoie la liste des tuples (sommet, degre) de chaque sommet du graphe.
Par exemple :

>>> degre_sommets(G)
[(1, 2), (2, 4), (3, 3), (4, 4), (5, 5), (6, 2), (7, 1), (8, 2), (9, 1)]

On définit la fonction tri_liste ci-après :

1 def tri_liste(l_deg):
2 """l_deg : liste de tuples (sommets,degré).
3 Trie la liste l_deg par degrés décroissants"""
4 for i in range(len(l_deg)+1):
5 som_max = i
6 deg_max = l_deg[i][1]
7 for j in range(i+1, len(l_deg)):
8 if deg_max < l_deg[j][1]:
9 som_max = j

10 deg_max = l_deg[j][1]
11 temp = l_deg[i]
12 l_deg[i] = l_deg[som_max]
13 l_deg[som_max] = temp
14 return l_deg

À l’exécution, tri_liste([(1, 2), (2, 2), (3, 3)]) renvoie l’erreur suivante :

IndexError: list index out of range

5. Commenter puis corriger cette erreur.

6. Choisir parmi les tris proposés celui qui correspond à la fonction tri_liste : tri par insertion, tri par sélection, tri fusion, tri
bulle.

7. Écrire une fonction tri_sommets qui prend en paramètre un graphe graphe et qui ne renvoie que la liste des sommets du
graphe graphe triés par degré décroissant. On pourra utiliser les fonctions définies dans les questions précédentes.
Par exemple :

>>> tri_sommets(G)
[5, 2, 4, 3, 1, 6, 8, 7,9]

On suppose que le graphe est planaire, c’est-à-dire qu’il existe une représentation de ce graphe dans un plan pour laquelle les arêtes ne
se croisent pas, et on définit la fonction coloration ci-après.

1 def coloration(g):
2 """Renvoie une coloration du graphe g"""
3 # Algorithme de Welsh-Powell, limité à 4 couleurs
4
5 couleur = ['Rouge', 'Bleu', 'Vert', 'Jaune']
6 coloration_sommets = {}
7 for s_i in g:
8 coloration_sommets[s_i] = None
9 for s_i in tri_sommets(g):

10 couleurs_voisins_s_i = [coloration_sommets[s_j] for s_j in voisins(g, s_i)]
11 k = 0
12 while couleur[k] in couleurs_voisins_s_i :
13 k = k + 1
14 coloration_sommets[s_i] = couleur[k]
15 return coloration_sommets

8. Donner le type et le contenu de la variable coloration_sommets de la fonction coloration ci-dessus pour le graphe G,
après execution de la boucle des lignes 7 et 8.

9. Recopier et compléter le renvoi de la fonction coloration appliquée au graphe G donné plus haut.
{1: 'Vert', 2: ..., ...}

9/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

Partie B
On s’intéresse maintenant à un réseau informatique.

FIGURE 3 – Réseau entreprise

Dans cette partie, les adresses IP sont composées de 4 octets, soit 32 bits. Elles sont notées X1.X2.X3.X4, où X1, X2, X3 et X4 sont les
représentations décimales des quatre octets. La notation X1.X2.X3.X4/n signifie que les n premiers bits de l’adresse IP représentent
la partie « réseau », les bits suivants représentent la partie « hôte ».

On fournit les données suivantes concernant le réseau de cette entreprise.
� Réseau local L1 :


 Adresse IP de l’ordinateur P1 : 190.12.10.25/24

 S1 : switch

� Réseau local L2 :

 Adresse réseau : 12.128.0.0

 Masque de sous réseau : 255.255.0.0

 S2 : switch

 P2 : ordinateur

Extrait de l’arborescence du système de fichiers de l’ordinateur P2 :

/

bin etc home lib

picky maurice timothee

travail photos fic1.txt important

TP cours photo1.png prog1.py

prog2.py

FIGURE 4 – Arborescence

10/11



Bac NSI Amérique du sud - novembre 2025 - sujet 2 Session 2025

Extrait du manuel de la commande cp :

FIGURE 5 – Manuel de la commande cp

10. Donner une commande en ligne qui permet de copier le fichier prog1.py dans le répertoire TP lorsqu’on se trouve dans le
répertoire nommé important.

11. Donner la commande qui permet de vérifier si l’ordinateur P1 est accessible lorsque l’on travaille sur l’ordinateur P2.

12. Donner une adresse possible pour l’ordinateur P2 du réseau local L2.

Dans le cadre du protocole RIP, le chemin emprunté par les informations est celui qui aura la distance la plus petite en nombre de sauts.
Dans le cadre du protocole OSPF, le chemin emprunté par les informations est celui qui aura le coût total minimal.

Extraits des tables de routage :

Routeur Destination Passerelle

R1 R9 R2

R2 R9 R3

R3 R9 R8

R4 R9 R3

R5 R9 R4

R6 R9 R4

R7 R9 R5

R8 R9 R9

R9 R9 LOCALHOST

13. Donner le chemin emprunté par un paquet de données allant de l’ordinateur P1 à l’ordinateur P2, en utilisant l’extrait de la table
de routage.

14. Donner le nom du protocole de routage qui semble être utilisé.

Dans les questions suivantes, on utilise le protocole de routage OSPF.

Pour calculer le coût C d’une liaison, on utilise la formule :

C �

108

BP
,

où BP est la bande passante en bits par seconde.

15. Calculer les coûts pour des liaisons de 100 Mbits/s, 1 Gbits/s et 10 Gbits/s.

16. Déterminer la route qui sera empruntée par le paquet de données envoyé de l’ordinateur P1 à l’ordinateur P2, en respectant le
protocole OSPF.

11/11


