
Amérique du sud - novembre 2025 - sujet 1

Exercice 1 (Bases de données, SQL, arbres binaires - 6 points)
Partie A
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

� construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs logiques AND et OR), JOIN ...
ON ;

� construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT, DELETE.

Une exoplanète est une planète située hors du système solaire. La plupart des exoplanètes découvertes à ce jour orbitent autour d’une
unique étoile.

Une étoile est repérée précisément dans le ciel par son ascension droite et sa déclinaison (voir Figure 1). La direction de coordon-
nées (0, 0) est une direction fixe du ciel servant d’origine de ce système de coordonnées.

FIGURE 1 – Coordonnées d’une étoile

(adaptée depuis https://commons.wikimedia.org/wiki/File:Coordonnees_equatoriales.svg)

On considère dans cet exercice deux relations décrivant des étoiles et les exoplanètes orbitant autour d’elles :
� la relation Etoiles contient les informations décrivant des étoiles :

 id_etoile : l’identifiant unique de l’étoile (nombre entier) ;

 nom : le nom de l’étoile (chaîne de caractères) ;

 ascension : l’ascension droite de l’étoile en degré (nombre réel) ;

 declinaison : la déclinaison de l’étoile en degré (nombre réel).

� la relation Exoplanetes contient les informations décrivant des exoplanètes :

 id_exoplanete : l’identifiant unique de l’exoplanète (nombre entier) ;

 masse : la masse de l’exoplanète, exprimée sous la forme d’une fraction de la masse de la planète Jupiter (nombre réel) ;

 rayon : le rayon de l’exoplanète, exprimée sous la forme d’une fraction du rayon de la planète Jupiter (nombre réel) ;

 id_etoile : l’identifiant de l’étoile autour de laquelle orbite l’exoplanète (nombre entier).

Une exoplanète dont l’attribut masse est égal à 6.84 a une masse 6,84 fois plus grande que celle de la planète Jupiter.

On fournit ci-dessous des extraits de ces deux tables :

Etoiles

id_etoile nom ascension declinaison

1 109 Psc 26.23 20.08

2 beta Pic 86.82 -51.07

3 K2-21 340.30 -14.49

4 Kepler-11 297.12 41.91

1

https://commons.wikimedia.org/wiki/File:Coordonnees_equatoriales.svg

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

Exoplanetes

id_exoplanete masse rayon id_etoile

1 6.84 1.15 1

2 11.90 1.65 2

3 8.89 1.20 2

4 0.01 0.16 3

5 0.02 0.22 3

6 0.01 0.16 4

7 0.01 0.26 4

L’attribut id_exoplanete est la clé primaire de la relation Exoplanetes. L’attribut id_etoile est la clé primaire de la relation
Etoiles.

1. Expliquer pourquoi l’attribut masse de la relation Exoplanetes ne peut pas servir de clé primaire de cette relation.

2. Donner le nom de l’attribut pouvant être utilisé comme clé étrangère dans la relation Exoplanetes. Expliquer son rôle.

3. Donner le résultat de la requête SQL suivante :

SELECT masse, rayon FROM Exoplanetes WHERE id_exoplanete = 4;

4. Écrire une requête SQL permettant d’obtenir l’identifiant et le nom des étoiles dont l’ascension droite est supérieure ou égale à
100 degrés.

On souhaite insérer une nouvelle exoplanète de rayon égal à 0,37 fois celui de Jupiter et pesant 0,03 fois la masse de Jupiter. Cette
exoplanète orbite autour de l’étoile Kepler-11 dont l’identifiant est 4. On pourra attribuer à cette nouvelle exoplanète l’identifiant 9 qui
n’apparaît pas dans la relation Exoplanetes.

5. Écrire une requête SQL permettant d’insérer cette nouvelle exoplanète dans la base de données.

6. Écrire une requête SQL permettant d’obtenir les rayons des exoplanètes orbitant autour de l’étoile nommée Kepler-11, dont l’iden-
tifiant est supposé non connu.

Partie B On souhaite désormais écrire une application Python permettant de classer et de retrouver efficacement les étoiles selon leur
position dans le ciel.

On rappelle qu’une étoile est repérée par son ascension droite et sa déclinaison. Par souci de simplicité, on considère désormais que deux
étoiles ont toujours des coordonnées entières et distinctes. On représente en Python les coordonnées d’une étoile par un tuple d’entiers
(ascension, declinaison).

Dans la suite, on considère les étoiles dont les coordonnées sont contenues dans la liste de tuples etoiles définie par

etoiles = [(29, 21), (17, 14), (10, 30), (35, 13), (30, 63), (15, 20)].

On cherche à construire un arbre binaire de recherche à partir des coordonnées présentes dans la liste etoiles afin d’accélérer les
opérations de traitement sur celles-ci. Pour cela :

� on commence par trier la liste etoiles par ordre croissant, afin que l’arbre résultant soit de hauteur minimale ;

� pour construire l’arbre binaire de recherche à partir des éléments de la liste etoiles compris entre les indices debut (inclus)
et fin (exclu) :

 la racine de l’arbre est l’élément d’indice milieu définit par milieu = (debut + fin)//2 ;

 on construit récursivement le sous-arbre gauche à l’aide des éléments de la liste etoiles compris entre les indices debut

(inclu) et milieu (exclu) ;

 on construit récursivement le sous-arbre droit à l’aide des éléments de la liste etoiles compris entre les indices milieu
+ 1 (inclus) et fin (exclu).

Pour implémenter cet algorithme, on représente en Python les arbres binaires non vides à l’aide de tuples de trois éléments (sag,
position, sad) dans lesquels :

� position est la valeur de la racine. Cette valeur est le couple de coordonnées permettant de repérer l’étoile ;

� sag et sad sont respectivement les sous-arbres gauche et droit de l’arbre.

2/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

L’arbre vide est quant à lui représenté par None.

On rappelle que l’on peut comparer des tuples en Python à l’aide de l’opérateur < : on compare tout d’abord les valeurs à l’indice0 de
chaque couple puis, en cas d’égalité, celles à l’indice 1. Ainsi, les expressions (1, 4) < (2, 3) et (1, 4) < (1, 6) s’éva-
luent toutes les deux à True.

La fonction sorted de Python prend en argument une liste et renvoie une nouvelle liste contenant les mêmes valeurs triées dans
l’ordre croissant à l’aide de l’opérateur <.

7. Donner la liste renvoyée par l’instruction sorted(etoiles).

8. Dessiner l’arbre binaire représenté par le tuple

(((None, (1, 34), None), (2, 35), None), (11, 36), (None, (17, 30), None))

L’arbre construit à partir de la liste etoiles a donc pour représentation Python :

(((None, (10, 30), None), (15, 20), (None, (17, 14), None)),
(29, 21), ((None, (30, 63), None), (35, 13), None))

Il est représenté sur la Figure 2 ci-après.

(29, 21)

(15, 20)

(10, 30) (17, 14)

(35, 13)

(30, 63)

FIGURE 2 – Arbre associé à la liste etoiles

9. Dessiner l’arbre binaire de recherche obtenu à partir de la liste :

[(1, 33), (2, 30), (2, 33), (4, 30), (8, 39)]

10. Recopier et compléter les lignes 3, 5, 6, 7 et 8 du code de la fonction construction qui prend en paramètres une liste
etoiles supposée triée par ordre croissant, ainsi que deux entiers debut et fin. Cette fonction renverra l’arbre binaire de
recherche associé aux coordonnées présentes entre les indices debut (inclus) et fin (exclu) de la liste etoiles.
Par exemple, l’appel initial pour construire l’arbre associé à la liste etoiles est construction(etoiles, 0, 6).
L’indice du milieu est 3, le sous-arbre gauche est renvoyé par l’appel construction(etoiles, 0, 3) et le sous-arbre
droit par construction(etoiles, 4, 6).

1 def construction(etoiles, debut, fin):
2 if debut == fin:
3 return ...
4 milieu = (debut + fin) // 2
5 sag = construction(...)
6 racine = ...
7 sad = ...
8 return ...

11. Écrire le code de la fonction en_arbre qui prend en paramètre une liste etoiles de couples de coordonnées non triés et
renvoie l’arbre construit selon la démarche décrite plus haut. On pourra utiliser la fonction construction de la question
précédente.

On souhaite désormais écrire une fonction contient qui prend en paramètres un arbre binaire de recherche arbre tel que renvoyé par
la fonction construction ainsi qu’un tuple d’entiers position représentant les coordonnées d’une étoile. Cette fonction renvoie
True si l’arbre contient cette étoile, False dans le cas contraire.

12. Recopier et compléter les lignes 3, 6, 7, 8 et 10 du code de la fonction contient.

3/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

1 def contient(arbre, position):
2 if arbre is None:
3 return ...
4 sag, valeur, sad = arbre
5 if position < valeur:
6 return contient(..., ...)
7 elif ...:
8 return ...
9 else:

10 return ...

4/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

Exercice 2 (Systèmes d’exploitation, processus, POO - 6 points)
Partie A

« Le système d’exploitation est chargé d’allouer les ressources (mémoires, temps processeur, entrées/sorties) nécessaires aux processus
et d’assurer que le fonctionnement d’un processus n’interfère pas avec celui des autres. »

Source : Wikipédia, extrait de l’article consacré aux processus.

1. Expliquer succinctement, dans ce contexte, ce qu’est un processus.

On rappelle qu’un processus peut-être soit élu, soit bloqué, soit prêt.

2. Recopier et compléter le schéma ci-dessous avec les termes suivants : élu, bloqué, prêt, élection, blocage, déblocage.

.

.

.

.

réveil

fin

FIGURE 1 – Schéma processus

On considère qu’un monoprocesseur est utilisé. Le système d’exploitation tel un chef d’orchestre, gère l’accès au processeur selon la
règle du « premier arrivé, premier servi ». À chaque processus, on associe un instant d’arrivée (instant où le processus demande l’accès
au processeur pour la première fois) et une durée d’exécution (durée d’accès au processeur nécessaire pour que le processus s’exécute
entièrement).

3. Donner la structure de données la plus adaptée pour gérer l’accès des processus au processeur selon la règle du « premier arrivé,
premier servi ».

Le tableau ci-dessous présente les instants d’arrivées et les durées d’exécution de quatre processus :

4 processus

Processus instant d’arrivée durée d’exécution

P1 0 4

P2 2 2

P3 3 4

P4 4 2

4. Recopier et compléter, à l’aide du tableau, le schéma ci-dessous avec les processus P1 à P4 en utilisant la règle du « premier arrivé
premier servi ».

Temps
0 5 10 15

P2 P2

FIGURE 2 – Utilisation du processeur

5. Déterminer le temps qu’a dû attendre le processus P4 avant de pouvoir accéder au processeur.

5/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

Partie B
6. Expliquer en quoi consiste la notion d’interblocage.

Afin d’éviter une situation d’interblocage, une solution consiste à attribuer à chaque processus un numéro de priorité. On souhaite
modéliser ce mode de fonctionnement mettant en jeu des numéros de priorité :

� en utilisant une liste de tuples, tuple constitué d’un entier représentant le numéro de priorité ainsi que d’une chaîne de caractères
représentant le nom du processus ;

� le processus prioritaire est celui dont le numéro de priorité est le plus petit.

Il est donc important que la liste soit et reste triée dans l’ordre décroissant des numéros de priorités. Par exemple :

>>> exemple = [(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1, 'Vivaldi')]
>>> # La liste est triée, le processus le plus prioritaire est 'Vivaldi'

On considère la classe Priority_Queue dont l’attribut liste_priorite est une liste de tuples, constitués d’un numéro de
priorité et d’un nom de processus comme dans l’exemple ci-avant.

1 class Priority_Queue:
2 def __init__(self):
3 self.liste_priorite = []
4
5 def est_vide(self):
6 """Renvoie Vrai si la liste_priorite
7 est vide, Faux sinon
8 """
9 return self.liste_priorite == []

10
11 def sortir(self):
12 """Retire et renvoie le dernier élément de
13 liste_priorite"""
14 assert ...
15 ...
16
17 def index_insertion_element(self, element):
18 """Renvoie la position/index d'insertion
19 d'element dans liste_priorite triée
20 par ordre décroissant
21 de numéro priorité
22 """
23 if self.est_vide():
24 ...
25 else:
26 debut = 0
27 fin = len(self.liste_priorite) - 1
28 milieu = (debut + fin) // 2
29 while ... <= fin:
30 if self.liste_priorite[milieu][0] > ...:
31 debut = ...
32 elif self.liste_priorite[milieu][0] < ...:
33 fin = ...
34 else:
35 # cas d'égalité de priorité
36 ... milieu
37 milieu = ...
38 return milieu + 1
39
40 def inserer(self, element):
41 """Modifie liste_priorite en insérant
42 element à la position adéquate
43 dans l'ordre décroissant de
44 numéro de priorité"""

6/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

7. Écrire l’instruction permettant d’instancier navigateurs un objet de la classe Priority_Queue.

On rappelle que la méthode pop(), appelée sans argument, supprime et renvoie le dernier élément d’une liste.

>>> fruits = ['pomme', 'pomme', 'raisin', 'orange', 'poire']
>>> fruits.pop()
'poire'
>>> fruits
['pomme', 'pomme', 'raisin', 'orange']

8. Recopier et compléter les lignes 14 et 15 du code de la méthode sortir qui après avoir vérifié, sous la forme d’une précondition,
que l’objet n’est pas vide, retire et renvoie le dernier élément de liste_priorite.

Pour maintenir la liste de priorités triée dans l’ordre décroissant des numéros de priorités, il est indispensable de savoir à quelle position
on doit insérer un nouvel élément en fonction de sa priorité. Cette question ne porte que sur la détermination de la position à laquelle
devrait être inséré un élément et cela sans effectuer d’insertion.

On considère, par exemple, que navigateurs.liste_priorite contient

[(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1, 'Vivaldi')]

Si on souhaite insérer :

� l’élément (12, 'Opera') on devrait l’insérer au tout début, à la position 0 de navigateurs.liste_priorite ;

� l’élément (6, 'Brave') on devrait l’insérer à la position 2 juste avant (5, 'Chrome') ;

� l’élément (0, 'Safari') on devrait l’insérer à la position 4 c’est-à-dire l’ajouter à la fin de la liste.

Pour déterminer la position d’insertion d’un nouvel élément on adapte la méthode dite de recherche dichotomique dans une liste triée
dans l’ordre décroissant des numéros de priorités (voir la méthode index_insertion_element). On compare la priorité du tuple
element à la priorité du tuple se situant au milieu de la liste_priorite.

� si elle est strictement supérieure on recommence dans la moitié gauche de liste_priorite ;

� si elle est strictement inférieure on recommence dans la moitié droite de liste_priorite ;

� si elle est égale la position devra être le milieu.

9. Donner le coût en temps de la recherche dichotomique.

10. Recopier et compléter les huit lignes 24, 29, 30, 31, 32, 33, 36, et 37 du code de la méthode index_insertion_element qui
prend en paramètre un élément element et qui renvoie la position d’insertion de l’élément element en utilisant une méthode
dichotomique.

11. Écrire, sans utiliser la méthode insert des listes Python, une méthode inserer qui prend en paramètre un élément element,
et modifie liste_priorite en insérant l’élément element à la position adéquate de la liste triée par ordre décroissant des
numéros de priorités. Par exemple :

>>> navigateurs.liste_priorite
[(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1, 'Vivaldi')]
>>> navigateurs.inserer((16, 'Brave'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'), (5,
'Chrome'), (1, 'Vivaldi')]
>>> navigateurs.inserer((6, 'Safari'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'),(6,
'Safari'), (5, 'Chrome'), (1, 'Vivaldi')]
>>> navigateurs.inserer((0, 'Lynx'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'),(6,
'Safari'), (5, 'Chrome'), (1, 'Vivaldi'), (0, 'Lynx')]

7/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

Exercice 3 (Systèmes d’exploitation, réseaux et programmation Python - 8 points)
Une association de jardinage anime un réseau d’échange de plantes.

Partie A
Les échanges de plantes sont traités à travers un système de gestion de fichiers dans un espace de stockage partagé.

Le répertoire association est positionné à la racine du système de fichiers.

Un répertoire annonces contient des fichiers au format HTML décrivant l’échange souhaité. Le fichier contient notamment le nom de
la personne qui soumet l’annonce et décrit la plante proposée ainsi que le type de plante souhaitée en échange. Chaque adhérent dispose
d’un répertoire à son nom à l’intérieur du répertoire adherents.

La figure ci-dessous donne un extrait de l’arborescence :

/
association

adherents
abi

tulipe_chen.html
muguet_abi.html

bachir
reseda_dana.html

[...]
annonces

rosier_abi.html
pivoine_bachir.html

L’utilisateur manipule le système de fichiers à travers un terminal (en ligne de commande). Il travaille sur un système de type Unix.

1. Décrire le résultat de la commande ls /association saisie dans un terminal.

2. Le répertoire courant dans le terminal est /association. Parmi les commandes systèmes suivantes, identifier celle qui permet
de définir annonces comme répertoire courant.

� cd /annonces

� cd ../annonces

� cd annonces

� cd association/annonces

Les quatre premières lignes de la documentation obtenue avec la commande cp -help sont les suivantes :

Utilisation : cp [OPTION]... [-T] SOURCE DEST
ou : cp [OPTION]... SOURCE... RÉPERTOIRE
ou : cp [OPTION]... -t RÉPERTOIRE SOURCE...

Copier la SOURCE vers DEST ou plusieurs SOURCEs vers RÉPERTOIRE.

Les quatre premières lignes du résultat de mv -help sont :

Utilisation : mv [OPTION]... [-T] SOURCE DEST
ou : mv [OPTION]... SOURCE... RÉPERTOIRE
ou : mv [OPTION]... -t RÉPERTOIRE SOURCE...

Renommer SOURCE en DEST, ou déplacer le ou les SOURCEs vers RÉPERTOIRE.

3. Expliquer la différence entre les commandes suivantes en précisant le nombre d’exemplaires du fichier rosier_abi.html à
l’issue de chacune d’elles.

� cp rosier_abi.html ../adherents/abi/

� mv rosier_abi.html ../adherents/abi/

8/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

Abi propose une annonce à laquelle Bachir voudra répondre. L’annonce d’Abi figure dans la page rosier_abi.html qui s’affiche
ainsi dans un navigateur :

FIGURE 1 – rosier_abi.html

Bachir devra répondre à l’annonce dans le code HTML de la page rosier_abi.html ci-dessous.

<html><body>
<h1>Échange un rosier bicolore "Léo Ferré"</h1>
<h2>Proposition de troc</h2>
<table>
<tr><td>Nom :</td> <td>Abi</td></tr>
<tr><td>Plante :</td><td>Rosier Léo Ferré</td></tr>
<tr><td>Lien : </td><td>Photo du
rosier</td></tr>
</table>
<h2>En échange de</h2>
<table>
<tr><td>Nom :</td><td></td></tr>
<tr><td>Plante :</td><td>Orchidée</td></tr>
<tr><td>Lien : </td><td></td></tr>
</table>
</body></html>

Pour répondre à l’annonce, Bachir doit écrire au bon endroit dans le code source de la page HTML les informations suivantes :

� Nom : Bachir

� Plante : Orchidée noire Cymbidium

� Lien : monsiteperso.fr/bachir/orchidee.jpg

4. Recopier et compléter la section de code que Bachir doit modifier pour répondre à l’annonce.

Lorsqu’une personne veut répondre à l’annonce, elle procède selon l’algorithme suivant :

� Étape 1 : elle ouvre la page HTML dans un éditeur ;

� Étape 2 : elle ajoute les informations nécessaires à l’échange ;

� Étape 3 : elle enregistre les modifications ;

� Étape 4 : elle fait une copie de l’annonce complétée vers son répertoire personnel ;

� Étape 5 : l’exemplaire original modifié est déplacé vers le répertoire personnel de la personne qui a proposé l’annonce.

À l’issue de cet algorithme, l’annonce a disparu du répertoire annonces.

5. Bachir et Chen veulent tous les deux répondre à l’annonce. Ils exécutent chacun l’algorithme sensiblement à la même heure. En
détaillant étape par étape un exemple, expliquer pourquoi cet algorithme se comporte mal avec la mise en concurrence des deux
propositions d’échange.

6. Proposer un nouvel algorithme qui empêche le conflit précédent.

9/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

Partie B
Les membres de l’association s’organisent en réseau afin de s’échanger les plantes de la main à la main.

Certains membres de l’association se rencontrent très régulièrement. Dans ce cas, on dira qu’ils sont amis. Quand un membre de
l’association doit faire parvenir une plante, il la confie à un ami qui lui-même la confiera à quelqu’un d’autre, à l’image des routeurs au
cœur d’Internet qui se transmettent les messages à router.

Pour acheminer au mieux les plantes, l’association s’inspire du protocole RIP. Ce protocole de routage s’adapte aux modifications
du réseau. On rappelle que le protocole RIP vise à minimiser le nombre de sauts sur les chemins de routage construits. Dans le contexte
de l’exercice, il s’agira de minimiser le nombre d’échanges entre adhérents pour faire parvenir la plante à son destinataire.

Les membres sont donc amenés à servir d’intermédiaire. Dans ce cadre, chaque membre construit l’équivalent d’une table de routage.
La table de routage d’Abi est la suivante :

Table de routage d’Abi

Destinataire Intermédiaire Distance

Bachir Bachir 1

Chen Bachir 2

Dana Dana 1

Edie Dana 2

D’après cette table, Abi est amie avec Bachir. Si Abi doit faire parvenir une plante à Chen, elle doit la confier à Bachir car il est un ami
de Chen. La distance correspond au nombre de rencontres nécessaires pour faire parvenir la plante.

Exemple : Dans le tableau, on lit que la distance entre Abi et Chen vaut 2 car si Abi veut faire parvenir un rosier à Chen, il faut
que Abi confie le rosier à Bachir puis que Bachir le donne à Chen. Edie n’est pas un ami d’Abi, son nom ne peut pas apparaitre dans la
colonne « Intermédiaire ».

7. Reproduire le graphe ci-dessous puis ajouter une arête pour que le graphe devienne cohérent avec la table de routage d’Abi.

Abi

Bachir

Dana

Chen Edie

FIGURE 2 – Relations entre les membres de l’association

Frida rejoint l’association. Elle est amie avec Abi. À son arrivée dans l’association, Frida ne connaît personne d’autre. Pour construire
sa table de routage, Frida exploite les informations de la table de routage d’Abi.

8. Reproduire et compléter la table de routage de Frida.

Table de routage de Frida

Destinataire Intermédiaire Distance

Abi Abia 1

Bachir

Chen

Dana

Edie

Abi met également sa table de routage à jour pour y inclure Frida, puis elle va communiquer sa table de routage à tous ses autres amis
(Bachir et Dana). Par la suite, Bachir et Dana, à leur tour, vont communiquer leur table de routage à leurs amis, et ainsi de suite.

9. Décrire les modifications que doivent faire Abi, Bachir, Chen, Dana et Edie dans leur table de routage respective suite à l’arrivée
de Frida.

10/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

Après quelques semaines les relations ont évolué, certains liens se sont rompus et un nouvel adhérent est arrivé. Abi et Frida échangent
les informations de leur table de routage respective afin de les actualiser.

Table de routage d’Abi

Destinataire Intermédiaire Distance

Bachir Bachir 1

Chen Bachir 3

Dana Dana 1

Edie Dana 2

Frida Frida 1

Guy Dana 3

Hakim Hakima 1

Table de routage de Frida

Destinataire Intermédiaire Distance

Abi Abia 1

Bachir Abi 2

Chen Chen 1

Dana Abi 2

Edie Guy 2

Guy Guy 1

10. Décrire les modifications que chacune d’elles doit apporter à sa table de routage afin de maintenir les routes les plus courtes pour
chaque destinataire.

Partie C
Dans cette partie, les tables de routage sont structurées sous forme de dictionnaires. Les clés du dictionnaire sont les destinataires. La
valeur associée à un destinataire est le tuple (intermediaire, distance).

La table de routage d’Abi est la suivante :

table_abi = {'Abi' : ('Abi' , 0),
'Bachir' : ('Bachir' , 1),
'Chen' : ('Bachir' , 3),
'Dana' : ('Dana' , 1),
'Edie' : ('Dana' , 2),
'Guy' : ('Dana' , 3),
'Hakim' : ('Hakim' , 1)}

La table de routage d’Hakim est la suivante :

table_hakim = {'Ines' : ('Janus' , 2),
'Janus' : ('Janus' , 1)}

11. En vous appuyant sur la table de routage d’Hakim, répondre par vrai ou faux à chacune des affirmations suivantes :

� Hakim et Janus sont amis ;
� Hakim et Ines sont amis ;
� Janus et Ines sont amis.

La fonction amis prend en argument une table de routage d’une personne et elle renvoie la liste de ses amis, c’est-à-dire la liste des
intermédiaires, sans doublon. La fonction a été correctement programmée, mais par erreur les lignes de codes ont été mélangées (elles
ont été triées dans l’ordre alphanumérique croissant). Les espaces en début de ligne ont été conservés et ils sont donc corrects, seul
l’ordre des lignes a été modifié.

11/12

Bac NSI Amérique du sud - novembre 2025 - sujet 1 Session 2025

1 liste.append(intermediaire)
2 if intermediaire not in liste:
3 """renvoie la liste des intermédiaires de la table de routage, sans doublon"""
4 for (intermediaire, distante) in table.values():
5 liste = []
6 return liste
7 def amis(table):

12. Remettre les lignes de codes dans le bon ordre.

Dans le but d’automatiser la mise à jour des tables de routages, il est proposé le programme suivant :

1 def maj(ma_table, ami, table_ami):
2 """mise à jour de ma_table (dict) avec les
3 informations de table_ami (dict).
4 ami est du type str."""
5 if ami not in ma_table.keys():
6 ma_table[ami] = (... , ...)
7 for adh in table_ami.keys():
8 (intermediaire, distance) = table_ami[adh]
9 if adh not in ma_table.keys():

10 ma_table[adh] = (intermediaire, distance + 1)
11 if ma_table[adh][...] > distance + 1:
12 ma_table[adh] = (ami, ...)
13 for adh in ma_table.keys():
14 (intermediaire, distance) = ma_table[adh]
15 if adh not in table_ami.keys() and adh != ami and intermediaire == ami:
16 ma_table[adh] = (None, float('inf'))
17 return ma_table

La fonction maj prends en paramètres :

� un dictionnaire ma_table représentant une table de routage ;

� une chaîne de caractères ami désignant le nom de l’ami ;

� un dictionnaire table_ami représentant la table de routage de l’ami. C’est de cette table de routage que sont extraites les
informations utiles.

Cette fonction met à jour la table de routage ma_table.

13. Expliquer le test de la ligne 5 du code de la fonction maj8.

14. Recopier et compléter la ligne 6 du code de la fonction maj.

15. La boucle de la ligne 7 parcourt les clés de table_ami pour mettre à jour les informations de ma_table. Recopier et compléter
les lignes 11 et 12 du code de la fonction maj.

La fonction nettoie, dont le code est donné ci-après, prend en paramètre un dictionnaire table représentant une table de routage.
Elle a pour objectif de supprimer les entrées du dictionnaire des membres devenus injoignables (suite à la mise à jour de la table dans la
fonction maj aux lignes 13 à 16).

1 def nettoie(table):
2 """Supprime toute les noms qui ne sont pas joignables"""
3 for (adh, ligne) in table.items():
4 if ligne[0] == None:
5 del table[adh]

Il est impossible, avec le langage Python, de supprimer des entrées dans un dictionnaire à l’intérieur d’une boucle qui le parcourt. C’est
la raison pour laquelle, à l’exécution de cette fonction avec une certaine table, on obtient l’erreur suivante :

Traceback [...]line 1, in nettoie
for (adh, ligne) in table.items():

RuntimeError: dictionary changed size during iteration

16. Proposer une version corrigée de la fonction nettoie qui évite le déclenchement de l’erreur décrite.

12/12

