
25NSIPE4

Exercice 1 (6 points)

Cet exercice porte sur les bases de données relationnelles et les requêtes SQL.

1. L’attribut nom n’est pas unique donc ne peut pas être choisi comme clé primaire, p.ex Lisa Benard et
Emma Benard partagent le même nom.

2. La requête SELECT nom, prenom FROM joueurs WHERE genre=2; permet d’obtenir les noms et pré-
noms des joueuses du club.

3. La requête INSERT INTO joueurs VALUES (6, "Gervais", "Nathan", 1) ; permet d’ajouter dans
la table le joueur dont le prénom est Nathan et le nom est Gervais, en choisissant une valeur pour
l’identifiant id cohérente avec le reste de la base.

4. La requête UPDATE competitions SET nom="Open de Tours" WHERE id=3 ; permet de corriger la
faute de frappe.

5. La requête SELECT nom, annee FROM competitions ORDER BY annee ; permet d’obtenir la liste des
noms des tournois, ainsi que leur année, en triant par année croissante.

6. La requête SELECT nom, prenom FROM joueurs JOIN participe ON joueurs.id=participe.id_joueur

WHERE nb_gagnant > nb_fautes ; permet d’obtenir le nom et le prénom des joueurs et des joueuses
ayant obtenu un nombre de coups gagnants strictement supérieur au nombre de fautes lors d’une
compétition, la même personne pouvant apparaître plusieurs fois si elle a rempli ces conditions lors de
plusieurs compétitions.

7. La requête SELECT joueurs.nom, prenom, competition.nom FROM joueurs JOIN participe

ON joueurs.id=participe.id_joueur JOIN competitions ON participe.id_compet=competitions.id

WHERE genre=2 AND annee=2023 ; permet d’obtenir le nom, le prénom des joueuses et le nom des
compétitions auxquelles elles ont participé en 2023.

8. Pour supprimer de la table joueurs la joueuse Emma Benard qui ne fait plus partie du club, il faut
d’abord supprimer dans la table participe toutes les lignes concernant Emma, pour éviter des viola-
tions de contraintes de référence.

9. Pour insérer Agathe et ses résultats dans la base, en choisissant pour identifiant pour la table joueurs

la valeur 7 et pour la table competitions la valeur 5, on utilise dans cet ordre les requêtes :

INSERT INTO joueurs VALUES (7, "Turion", "Agathe", 2) ;

DELETE FROM participe WHERE id_compet=5;

DELETE FROM competitions WHERE id=5;

INSERT INTO competitions VALUES (5, "Tournoi de Blois", 2024) ;

INSERT INTO participe VALUES (7, 5, 14, 15, 2) ;

On a commencé par supprimer l’Open de Nantes 2021 et toutes les références qui y sont faites dans la
table participe.

Exercice 2 (6 points)

Cet exercice porte sur les réseaux, le routage, les graphes et la programmation.

Partie A : Réseau et adressage

1. Parmi les deux adresses IP suivantes : 137.254.128.200 et 137.254.128.210, l’adresse IP de la machine
déjà connectée au sous-réseau Commerces est 137.254.128.200 à cause de la politique utilisée pour la
numérotation.

2. Il n’est pas possible d’ajouter 132 machines sur le sous-réseau Commerces, puisque le masque de sous
réseau est 255.255.255.0 ce qui signifie qu’il y a 254 adresses disponibles qui vont de 137.254.128.1 à
137.254.128.254 (les adresses 137.254.128.0 et 137.254.128.255 étant l’adresse du sous-réseau lui-même
et l’adresse de diffusion respectivement) ; or 207 machines sont déjà connectées, on ne peut en ajouter
que 47.

1



Partie B : Programmation d’un protocole de routage

3. Donner la liste des routeurs par lesquels transite un message envoyé depuis une machine du sous-réseau
Navigation à destination d’une machine du sous- réseau Commerces est R1-R3-R6-R7 par lecture des
tables de routage.

4. Lorsque qu’une machine du sous-réseau Commerces envoie des données à destination d’une machine
du sous-réseau Navigation, le début du routage est R7-R4-R6-R4 et on a une boucle infinie R7-R4-R6-
R4-R6-R4-R6-R4-R6-R4-...

5. Le dictionnaire correspondant au réseau de la Figure 2 est

{'R1': ['R2', 'R3'], 'R2': ['R1','R3','R5'], 'R3': ['R1', 'R2'], 'R5': ['R2']}

6. Le principe d’une fonction récursive est de s’appeler elle-même.

7. On écrit une fonction plus_court_chemin(graphe, r_depart, r_arrivee).

def plus_court_chemin(graphe, r_depart, r_arrivee):

chemins = liste_chemins(graphe, r_depart, r_arrivee)

meilleur_chemin=chemins[0] # on suppose qu'il y a au moins un chemin !

for k in range(1, len(chemins)):

if len(chemins[k])<len(meilleur_chemin):

meilleur_chemin = chemins[k]

return meilleur_chemin

8. On complète la fonction plus_court_chemin_largeur(graphe, r_depart, r_arrivee).

def plus_court_chemin_largeur(graphe, r_depart, r_arrivee):

dict_chemins = {}

L = [r_depart]

sommets_marques = [r_depart]

dict_chemins[r_depart] = [r_depart]

for r in L: # sérieusement, ne faites pas ça ; L est modifiée dans la boucle

for s_r in graphe[r]:

if not s_r in sommets_marques:

sommets_marques.append(s_r)

dict_chemins[s_r] = dict_chemins[r] + [s_r]

if s_r == r_arrivee :

return dict_chemins

L.append(s_r)

9. On écrit une fonction table_routage(graphe, routeur).

def table_routage(graphe, routeur):

table = dict()

for destination in graphe:

if destination != routeur:

route = plus_court_chemin_largeur(graphe, routeur, destination)

table[destination] = route[routeur]

return table

Partie C : Utilisation du protocole OSPF

10. Le coût correspondant à la liaison Ethernet est
109

10 × 106
= 100, le coût correspondant à la liaison Fast

Ethernet est
109

100× 106
= 10, le coût correspondant à la liaison Fibre est

109

500× 106
= 2.

11. Un message envoyé depuis le routeur R1 à destination du routeur R7, en respectant le protocole OSPF,
suit la route R1-R3-R2-R5-R6-R4-R7.

2



12. On complète la table de routage du routeur R2 en respectant le protocole OSPF ; on a indiqué les
coûts.

Table de routage de R2

Destination Suivant Coût

R1 R3 4

R3 R3 2

R4 R5 14

R5 R5 10

R6 R5 12

R7 R5 16

Exercice 3 (8 points)

Cet exercice porte sur l’algorithmique des tableaux, la gestion de bugs, les listes, les piles et la program-

mation orientée objet.

Partie A

1. Le résultat que doit renvoyer tri_dictatorial([31, 45, 41, 28, 37, 108, 127, 2, 124, 421])

est [31, 45, 108, 127, 421].

2. Le tri dictatorial ne conserve pas l’ensemble des valeurs de la liste passée en paramètre donc il n’est
pas un algorithme de tri.

3. On déroule l’appel tri_dictatorial([8, 2, 9, 6, 12]) dans un tableau.

étape i serie[i] serie[i-1] serie[i]>=serie[i-1] serie_triee

0 [8]

1 1 2 8 False [8]

2 2 9 2 True [8, 9]

3 3 6 9 False [8, 9]

4 4 12 6 True [8, 9, 12]

La valeur renvoyée est [8, 9, 12].

4. L’erreur obtenue est une erreur d’index puisqu’on essaie d’accéder au premier élément d’une liste vide.
On peut proposer cette modification, qui respecte davantage la description de l’algorithme :

1 def tri_dictatorial(serie):

2 if serie == []:

3 return []

4 serie_triee = [serie[0]]

5 for i in range(1, len(serie)):

6 if serie[i] >= serie[i - 1]:

7 serie_triee.append(serie[i])

8 return serie_triee

5. Des tests utilisant des cas d’usage ne peuvent pas être exhaustifs, il se peut qu’un cas d’usage non testé
provoque une erreur, même si en général on essaie de choisir suffisamment de cas d’usage pour avoir
une bonne couverture du code.

6. La cause du problème est la comparaison serie[i] >= serie[i - 1] qui devrait

être serie[i] >= serie_triee[-1].

Partie B

7. On construit les trois maillons m1, m0 et m8 et la liste chaînée représentés ci-dessus avec les instructions
suivantes.

m8 = Maillon(8, None)

m0 = Maillon(0, m8)

m1 = Maillon (1, m0)

ma_liste = Liste(m1)

3



8. On indique ce que renvoie chacune des instructions.

>>> m1.valeur == 1

True

>>> m1.suivant.valeur == 8

False

>>> m1.suivant.suivant == None

False

>>> m1.suivant.suivant.suivant == None

True

9. L’instruction ma_liste.tete.suivant = m8 convient, mais le résultat n’est pas une liste chaînée.

10. On complète la fonction tri_dictatorial_chaine.

def tri_dictatorial_chaine(chaine):

maillon = chaine.tete

while maillon.suivant is not None :

if maillon.valeur <= maillon.suivant.valeur:

maillon = maillon.suivant

else:

maillon.suivant = maillon.suivant.suivant

Partie C

11. Une pile est une structure linéaire LIFO last-in first-out, dans laquelle on peut empiler un élément à
la fois, et dépiler le dernier élément empilé si la pile n’est pas vide.

12. On a remis les lignes de pseudo-code dans l’ordre en respectant les indentation.

⋆ si p n’est pas vide :

• on crée une pile intermédiaire p2 vide ;

• on dépile p, on stocke l’élément obtenu dans la variable dernier_conservé et on l’empile
dans p2 ;

• tant que p n’est pas vide :

+ si candidat est supérieure ou égal à dernier_conservé :

− dernier_conservé prend la valeur de candidat et on l’empile dans p2

• tant que p2 n’est pas vide :

+ on dépile p2 et on empile l’élément obtenu dans p ;

13. On écrit en Python la fonction tri_dictatorial_pile qui prend en paramètre p une instance de Pile

et modifie cette pile afin qu’elle ne conserve que des éléments triés selon le pseudo-tri dictatorial.

def tri_dictatorial_pile(p):

if not p.est_vide():

p2 = Pile

dernier_conserve = p.depiler()

p2.empiler(dernier_conserve)

while not p.est_vide():

candidat = p.depiler()

if candidat>=dernier_conserve:

dernier_conserve=candidat

p2.empile(candidat)

while not p2.est_vide():

p.empile(p2.depile())

4


