25NSIJ2AS1

Exercice 1 (6 points)

Cet exercice porte sur les bases de données relationnelles, les requétes SQL, la programmation en Python
et la manipulation de listes.

Partie A

1.

Larequéte SELECT nom FROM station WHERE latitude = -22.276000 AND longitude = 166.452833
renvoie la table :

nom
NOUMEA

2. Larequéte SELECT nom FROM station ORDER BY nom ; permet d’obtenir le nom de toutes les stations
meétéorologiques triées par ordre alphabétique.

3. La requéte SELECT forceVent, dirVent FROM observation NATURAL JOIN station
WHERE nom = ’BOURAKE’ AND date = ’2023010214° ; permet d’obtenir la force et la direction du
vent & BOURAKE le 2 janvier 2023 & 14h.

4. La requéte SELECT COUNT(idObs) FROM observation ; permet d’obtenir le nombre total de relevés
en Nouvelle Calédonie.

5. Le schéma relationnel de la table meteo en supprimant les données hauteur, precip, forceVent et
dirVent est meteo(idStat : INT, nom : TEXT, latitude : REAL, longitude : REAL,
idObs : INT, date : TEXT(’AAAAMMJJHH’).

Partie B

6. Les commandes créent une liste & partir du fichier 'observations.csv', suppriment les noms des

champs, puis transforment les chaines de caractéres en entiers ou en flottants pour certains champs; le
résultat obtenu est une version correctement typée du premier enregistrement de la table.

7. L’instruction nécessaire a I'utilisation du module Python math est import math.

8. On compléte la fonction coord.

36

37

38

39

40

41

10.

def coord(l_obs, stat_ref):
...,
for obs in 1_obs :
if obs[1] == stat_ref
return (obs[2], obs[3])

. On écrit un algorithme en pseudo-code de la fonction liste_stations.

def liste_stations(l_obs, stat_ref, dist):
on initialise une liste wvide l_ident qui contiendra la liste des identifiants
pour chaque station stat de la liste l_obs
si la distance entre stat et stat_ref est inférieure a dist
appendre l'identifiant de stat a la liste l_tdent
renvoyer l_ident

On écrit une fonction nettoyage.

def nettoyage(l_obs, stat_ref):
1_stations = liste_stations(l_obs, stat_ref, 2000)
1_temp = []
for obs in 1_obs:
if obs[0] in 1_stations:
1_temp.append (obs[9])
return 1_temp

11. On écrit la fonction moyenne.

def moyenne (L) :
return sum(L)/len(L)

ou bien, de maniére plus explicite,

def moyenne (L) :
somme = O
nombre = 0
for x in L:
somme = somme + X
nombre = nombre + 1
return somme / nombre

12. Ces commandes permettent d’obtenir la moyenne des températures des stations situées & moins de
2000 unités de la station Paris 11 le ler janvier 2024.

>>> liste_obs creation_liste_obs('observations.csv')

>>> liste_obs = supp_champs(liste_obs)

>>> transtype(liste_obs)

>>> L = [obs[9] for obs in liste_obs if obs[5] // 100 == 20240101 and distance('Paris_11', ob
>>> moyenne (L)

Exercice 2 (6 points)

Cet exercice porte sur la structure de pile, la programmation objet et l’algorithmique.

1. On peut terminer le jeu en versant le tube 4 dans le tube 3 en partant de la situation de la figure 4.

Partie A : Les tubes

2. La structure de pile est une structure linéaire de type LIFO last-in first-out, dont les méthodes empiler
et depiler permettent d’ajouter un élément au sommet et de récupérer le sommet en le supprimant
de la pile, respectivement.

3. Les lignes 11 et 12 du code de la classe tube permettent d’empiler la couleur et de mettre a jour la
prochaine position ott on pourra empiler une autre couleur.

4. On compléte le code de la méthode depiler.

14 def depiler(self):

15 if self.taille > O:

16 self.taille = self.taille - 1

17 couleur = self.contenul[self.taille]
18 self.contenu[self.taille] = 0

19 return couleur

20 else:

21 return -1

5. On écrit une méthode est_plein de la classe tube.

def est_plein(self):
return self.taille ==

6. On écrit une méthode est_homogene de la classe tube.

def est_homogene(self):

if self.taille < 2:
return True

if self.contenu[l1] !'= self.contenul0]:
return False

if self.taille == 2:
return True

return self.contenu[2] == self.contenul1]

7. On écrit une méthode derniere_couleur de la classe tube.

def derniere_couleur(self):
if self.taille ==
return -1
return self.contenu[self.taille - 1]

8. On compléte le code de la méthode verser.

1 def verser(self, other):

2 while not self.est_vide() and (other.est_vide() or other.taille<3 \
3 and self.derniere_couleur() == other.derniere_couleur())

4 couleur = self.depiler()

5 other.empiler(couleur)

Partie B : Le jeu

9. Le code tube2.verser (tubel) permet de faire passer la variable etat de la représentation en figure 2
a celle de la figure 3.
10. On écrit une fonction booléenne gagne.
def gagne(etat):
for pile in etat:
if not etat.est_homogene():

return False
return True

Exercice 3 (8 points)

Cet exercice porte sur la programmation Python, les graphes et les réseau.
Partie A

1. Donner la valeur associée & la clé 1 dans ce dictionnaire est [2, 5].

2. On écrit une fonction voisins.

def voisins(graphe, k):
return graphe [k]

3. On écrit la fonction degre_du_sommet.

def degre_du_sommet(graphe, sommet):
return len(graphe[sommet])

4. On écrit la fonction degre_sommets.

def degre_sommets(graphe) :
return [(sommet, degre_du_sommet(graphe, sommet)) for sommet in graphe]

. Ligne 4 la boucle for fait varier i de 0 & 1len(1_deg) inclus mais les éléments de 1_deg sont indexés

de 0 & len(1_deg) exclus, ce qui explique l'erreur d’index déclenché a la ligne 6 lorsque i vaut 3 dans
le cas d’usage testé. Supprimer le +1 suffit a corriger 'erreur.

for i in range(len(l_deg)):

6. Le tri de tri_liste est un tri par sélection.

7. On écrit une fonction tri_sommets.

10

11

12

13

14

15

def tri_sommets(graphe):
liste_couples = tri_liste(degre_sommets(graphe))
return [t[0] for t in liste_couples]

def coloration(g):
"""Renvoie une coloration du graphe g
Algorithme de Welsh-Powell, limité a 4 couleurs

nnn

couleur = ['Rouge', 'Bleu', 'Vert', 'Jaune']
coloration_sommets = {}
for s_i in g:
coloration_sommets[s_i] = None
for s_i in tri_sommets(g):
couleurs_voisins_s_i = [coloration_sommets[s_j] for s_j in voisins(g, s_i)]

k=0
while couleur[k] in couleurs_voisins_s_i :
k=k+ 1

coloration_sommets[s_i] = couleur [k]
return coloration_sommets

. La variable coloration_sommets est un dictionnaire qui aprés exécution de la boucle des lignes 7 et 8

vaut {1: None, 2: None, 3: None, 4: None, 5: None, 6: None, 7: None,8: None, 9: None}.

. La fonction fournit le coloriage :

{1: 'Vert', 2: 'Bleu', 3: 'Rouge', 4: 'Vert', 5: 'Rouge', 6: 'Bleu', 7: 'Bleu’,
8: 'Bleu', 9: 'Rouge'}

Partie B

10.
11.
12.
13.

14.

15.

16.

La commande cp progl.py ../travail/TP convient.
La commande ping 190.12.10.25 convient.
Une adresse possible pour 'ordinateur P2 est 12.128.42.42.
Le chemin emprunté par un paquet de données allant de l'ordinateur P1 & l'ordinateur P2 est P1-S1-
R1-R2-R3-R8-R9-52-P2. 1
Le protocole de routage qui semble étre utilisé est RIP, puisque avec OSPF R1-R5-R4-R3 serait plus
court que R1-R3.

. . : . . . 108
Les cotts pour des liaisons de 100 Mbits/s, 1 Gbits/s et 10 Gbits/s sont respectivement 100 < 105 — 1,
108 108

5 = 0,01 arrondi a 1.

109 10 x 10
Par conséquent les cotits sont tous égaux a 1, et utiliser OSPF revient a utiliser RIP, méme si les tables

de routage ne sont pas calculées par le méme algorithme.

= 0,1 arrondi & 1, et

La route qui sera empruntée par le paquet de données envoyé de l'ordinateur P1 a 'ordinateur P2, en
respectant le protocole OSPF, sera donc P1-S1-R1-R2-R3-R8-R9-S2-P2, ce qui remet en question la
réponse a la question 14 évidemment.

1. OSPF travaille avec des cofits entiers.

