
25NSIJ2AS1

Exercice 1 (6 points)

Cet exercice porte sur les bases de données relationnelles, les requêtes SQL, la programmation en Python

et la manipulation de listes.

Partie A

1. La requête SELECT nom FROM station WHERE latitude = -22.276000 AND longitude = 166.452833

renvoie la table :

nom

NOUMEA

2. La requête SELECT nom FROM station ORDER BY nom ; permet d’obtenir le nom de toutes les stations
météorologiques triées par ordre alphabétique.

3. La requête SELECT forceVent, dirVent FROM observation NATURAL JOIN station

WHERE nom = ’BOURAKE’ AND date = ’2023010214’ ; permet d’obtenir la force et la direction du
vent à BOURAKE le 2 janvier 2023 à 14h.

4. La requête SELECT COUNT(idObs) FROM observation ; permet d’obtenir le nombre total de relevés
en Nouvelle Calédonie.

5. Le schéma relationnel de la table meteo en supprimant les données hauteur, precip, forceVent et
dirVent est meteo(idStat : INT, nom : TEXT, latitude : REAL, longitude : REAL,

idObs : INT, date : TEXT(’AAAAMMJJHH’).

Partie B

6. Les commandes créent une liste à partir du fichier 'observations.csv', suppriment les noms des
champs, puis transforment les chaînes de caractères en entiers ou en flottants pour certains champs ; le
résultat obtenu est une version correctement typée du premier enregistrement de la table.

7. L’instruction nécessaire à l’utilisation du module Python math est import math.

8. On complète la fonction coord.

36 def coord(l_obs, stat_ref):

37 """ ... """

38 #

39 for obs in l_obs :

40 if obs[1] == stat_ref :

41 return (obs[2], obs[3])

9. On écrit un algorithme en pseudo-code de la fonction liste_stations.

def liste_stations(l_obs, stat_ref, dist):

on initialise une liste vide l_ident qui contiendra la liste des identifiants

pour chaque station stat de la liste l_obs

si la distance entre stat et stat_ref est inférieure à dist

appendre l'identifiant de stat à la liste l_ident

renvoyer l_ident

10. On écrit une fonction nettoyage.

1 def nettoyage(l_obs, stat_ref):

2 l_stations = liste_stations(l_obs, stat_ref, 2000)

3 l_temp = []

4 for obs in l_obs:

5 if obs[0] in l_stations:

6 l_temp.append(obs[9])

7 return l_temp

1

11. On écrit la fonction moyenne.

def moyenne(L):

return sum(L)/len(L)

ou bien, de manière plus explicite,

def moyenne(L):

somme = 0

nombre = 0

for x in L:

somme = somme + x

nombre = nombre + 1

return somme / nombre

12. Ces commandes permettent d’obtenir la moyenne des températures des stations situées à moins de
2000 unités de la station Paris_11 le 1er janvier 2024.

>>> liste_obs = creation_liste_obs('observations.csv')

>>> liste_obs = supp_champs(liste_obs)

>>> transtype(liste_obs)

>>> L = [obs[9] for obs in liste_obs if obs[5] // 100 == 20240101 and distance('Paris_11', obs[

>>> moyenne(L)

Exercice 2 (6 points)

Cet exercice porte sur la structure de pile, la programmation objet et l’algorithmique.

1. On peut terminer le jeu en versant le tube 4 dans le tube 3 en partant de la situation de la figure 4.

Partie A : Les tubes

2. La structure de pile est une structure linéaire de type LIFO last-in first-out, dont les méthodes empiler
et depiler permettent d’ajouter un élément au sommet et de récupérer le sommet en le supprimant
de la pile, respectivement.

3. Les lignes 11 et 12 du code de la classe tube permettent d’empiler la couleur et de mettre à jour la
prochaine position où on pourra empiler une autre couleur.

4. On complète le code de la méthode depiler.

14 def depiler(self):

15 if self.taille > 0:

16 self.taille = self.taille - 1

17 couleur = self.contenu[self.taille]

18 self.contenu[self.taille] = 0

19 return couleur

20 else:

21 return -1

5. On écrit une méthode est_plein de la classe tube.

def est_plein(self):

return self.taille == 3

2

6. On écrit une méthode est_homogene de la classe tube.

def est_homogene(self):

if self.taille < 2:

return True

if self.contenu[1] != self.contenu[0]:

return False

if self.taille == 2:

return True

return self.contenu[2] == self.contenu[1]

7. On écrit une méthode derniere_couleur de la classe tube.

def derniere_couleur(self):

if self.taille == 0:

return -1

return self.contenu[self.taille - 1]

8. On complète le code de la méthode verser.

1 def verser(self, other):

2 while not self.est_vide() and (other.est_vide() or other.taille<3 \

3 and self.derniere_couleur() == other.derniere_couleur()) :

4 couleur = self.depiler()

5 other.empiler(couleur)

Partie B : Le jeu

9. Le code tube2.verser(tube1) permet de faire passer la variable etat de la représentation en figure 2
à celle de la figure 3.

10. On écrit une fonction booléenne gagne.

def gagne(etat):

for pile in etat:

if not etat.est_homogene():

return False

return True

Exercice 3 (8 points)

Cet exercice porte sur la programmation Python, les graphes et les réseaux.

Partie A

1. Donner la valeur associée à la clé 1 dans ce dictionnaire est [2, 5].

2. On écrit une fonction voisins.

def voisins(graphe, k):

return graphe[k]

3. On écrit la fonction degre_du_sommet.

def degre_du_sommet(graphe, sommet):

return len(graphe[sommet])

4. On écrit la fonction degre_sommets.

def degre_sommets(graphe):

return [(sommet, degre_du_sommet(graphe, sommet)) for sommet in graphe]

3

5. Ligne 4 la boucle for fait varier i de 0 à len(l_deg) inclus mais les éléments de l_deg sont indexés
de 0 à len(l_deg) exclus, ce qui explique l’erreur d’index déclenché à la ligne 6 lorsque i vaut 3 dans
le cas d’usage testé. Supprimer le +1 suffit à corriger l’erreur.

4 for i in range(len(l_deg)):

6. Le tri de tri_liste est un tri par sélection.

7. On écrit une fonction tri_sommets.

def tri_sommets(graphe):

liste_couples = tri_liste(degre_sommets(graphe))

return [t[0] for t in liste_couples]

1 def coloration(g):

2 """Renvoie une coloration du graphe g"""

3 # Algorithme de Welsh-Powell, limité à 4 couleurs

4

5 couleur = ['Rouge', 'Bleu', 'Vert', 'Jaune']

6 coloration_sommets = {}

7 for s_i in g:

8 coloration_sommets[s_i] = None

9 for s_i in tri_sommets(g):

10 couleurs_voisins_s_i = [coloration_sommets[s_j] for s_j in voisins(g, s_i)]

11 k = 0

12 while couleur[k] in couleurs_voisins_s_i :

13 k = k + 1

14 coloration_sommets[s_i] = couleur[k]

15 return coloration_sommets

8. La variable coloration_sommets est un dictionnaire qui après exécution de la boucle des lignes 7 et 8
vaut {1: None, 2: None, 3: None, 4: None, 5: None, 6: None, 7: None,8: None, 9: None}.

9. La fonction fournit le coloriage :

{1: 'Vert', 2: 'Bleu', 3: 'Rouge', 4: 'Vert', 5: 'Rouge', 6: 'Bleu', 7: 'Bleu',

8: 'Bleu', 9: 'Rouge'}

Partie B

10. La commande cp prog1.py ../travail/TP convient.

11. La commande ping 190.12.10.25 convient.

12. Une adresse possible pour l’ordinateur P2 est 12.128.42.42.

13. Le chemin emprunté par un paquet de données allant de l’ordinateur P1 à l’ordinateur P2 est P1-S1-
R1-R2-R3-R8-R9-S2-P2. 1

14. Le protocole de routage qui semble être utilisé est RIP, puisque avec OSPF R1-R5-R4-R3 serait plus
court que R1-R3.

15. Les coûts pour des liaisons de 100 Mbits/s, 1 Gbits/s et 10 Gbits/s sont respectivement
10

8

100× 106
= 1,

10
8

109
= 0, 1 arrondi à 1 1, et

10
8

10× 109
= 0, 01 arrondi à 1.

Par conséquent les coûts sont tous égaux à 1, et utiliser OSPF revient à utiliser RIP, même si les tables
de routage ne sont pas calculées par le même algorithme.

16. La route qui sera empruntée par le paquet de données envoyé de l’ordinateur P1 à l’ordinateur P2, en
respectant le protocole OSPF, sera donc P1-S1-R1-R2-R3-R8-R9-S2-P2, ce qui remet en question la
réponse à la question 14 évidemment.

1. OSPF travaille avec des coûts entiers.

4

