
25NSIPE4

Exercice 1 (6 points)

Cet exercice porte sur les bases de données relationnelles et les requêtes SQL.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec les opérateurs
logiques AND , OR ), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, INSERT, DELETE ;

• affiner les recherches à l’aide de ORDER BY.

Pour analyser les résultats et les performances de plusieurs joueurs et joueuses de tennis d’un club, on
élabore une base de données relationnelle. Les données récoltées lors de plusieurs tournois, au fil des saisons,
doivent ensuite permettre de fournir des statistiques. Chacune des requêtes demandées devra être écrite en
langage SQL.

Voici un extrait de la table joueurs dans cette base :

joueurs

id nom prenom genre

1 Durand Enzo 1
2 Panais Lise 2
3 Alpin Lucas 1
4 Benard Lisa 2
5 Benard Emma 2

• id est de type INT, cet attribut est la clé primaire de cette table ;

• nom est de type TEXT ;

• prenom est de type TEXT ;

• genre est de type INT (1 pour un joueur, 2 pour une joueuse).

1. Expliquer pourquoi l’attribut nom ne peut pas être choisi comme clé primaire.

2. Écrire une requête permettant d’obtenir les noms et prénoms des joueuses du club.

3. Écrire une requête permettant d’ajouter dans la table le joueur dont le prénom est Nathan et le nom
est Gervais, en choisissant une valeur pour l’identifiant id cohérente avec le reste de la base.

On s’intéresse maintenant à la table competitions, répertoriant les différents tournois auxquels ont
participé les joueurs et joueuses du club.

competitions

id nom annee

1 Open de Tours 2022
2 Tournoi de Blois 2023
3 Open de Toums 2023
4 Open de Nantes 2023
5 Open de Nantes 2021
6 Tournoi d’Angers 2024

• id est de type INT, il s’agit de la clé primaire de cette table ;

• nom est de type TEXT ;

• annee est de type INT.

4. Une faute de frappe s’est glissée dans le nom de la compétition d’identifiant 3. Écrire une requête
permettant de corriger le nom en Open de Tours.

5. Écrire une requête permettant d’obtenir la liste des noms des tournois, ainsi que leur année, en triant
par année croissante.

1



Le lien entre ces deux tables se fait à l’aide d’une table participe. Celle-ci contient aussi les statistiques
recueillies lors de cette participation.

participe

id_joueur id_compet nb_fautes nb_gagnant aces

1 1 16 12 1
3 1 14 8 2
1 3 7 15 2
3 3 12 8 1
2 2 15 10 3
2 4 10 17 0
4 4 7 18 4
5 4 11 15 1

• id_joueur est de type INT et est une clé étrangère se rattachant à la table joueurs ;

• id_compet est de type INT et est une clé étrangère se rattachant à la table competitions ;

• nb_fautes est de type INT et donne le nombre de fautes directes faites durant le tournoi ;

• nb_gagnant est de type INT et donne le nombre de coups gagnants réalisés durant le tournoi ;

• aces est de type INT et donne le nombre de services gagnants non touchés par l’adversaire durant le
tournoi ;

• la clé primaire de la table est constituée du couple des attributs id_joueur et id_compet.

6. Écrire une requête permettant d’obtenir le nom et le prénom des joueurs et des joueuses ayant obtenu un
nombre de coups gagnants strictement supérieur au nombre de fautes lors d’une compétition, la même
personne pouvant apparaître plusieurs fois si elle a rempli ces conditions lors de plusieurs compétitions.

7. Écrire une requête permettant d’obtenir le nom, le prénom des joueuses et le nom des compétitions
auxquelles elles ont participé en 2023.

8. On souhaite supprimer de la table joueurs la joueuse Emma Benard qui ne fait plus partie du club.
Déterminer quelle précaution on doit prendre avant de pouvoir le faire. Justifier.

9. Une joueuse du club, de prénom Agathe et de nom Turion, a participé au Tournoi de Blois en 2024, où
elle a fait 14 fautes directes, réalisé 15 coups gagnants et servi 2 aces. Écrire les différentes requêtes,
dans le bon ordre, permettant d’insérer cette joueuse et ses résultats dans la base, en choisissant pour
identifiant pour la table joueurs la valeur 7 et pour la table competitions la valeur 5.

Exercice 2 (6 points)

Cet exercice porte sur les réseaux, le routage, les graphes et la programmation.

Un aéroport dispose d’un réseau informatique décomposé en différents sous-réseaux :

• Navigation (N) : utilisé principalement par la tour de contrôle ;

• Guichets (G) : utilisé aux guichets dans le hall ;

• Achats (A) : utilisé sur les bornes d’achat placées dans le hall ;

• Sécurité (S) : utilisé aux contrôles de sécurité ;

• Portes (P) : utilisé au niveau des portes d’accès aux avions ;

• Bagages (B) : utilisé par les services qui gèrent le transit des bagages ;

• Commerces (C) : utilisé par tous les commerces.

2



Le réseau possède l’architecture suivante, où R1, R2, R3, R4, R5, R6 et R7 sont des routeurs :

•

N
•

B

•

P

•

S

•

C
•

A

•

G

•
R1

•
R2

•
R3

•
R4

•
R5

•
R6

•
R7

Figure 1. Schéma du réseau.

Partie A : Réseau et adressage

On souhaite ajouter des machines sur le sous-réseau Commerces sur lequel sont déjà connectées 207
machines. L’adresse du sous-réseau est 137.254.128.0 et le masque de sous-réseau utilisé est 255.255.255.0
(l’adresse IP du réseau est donc 137.254.128.0/24 en notation CIDR). On rappelle que cela signifie que les
adresses IP du réseau ont toutes en commun leurs 24 premiers bits lorsque les adresses IP sont écrites en
binaire.

À part le routeur, toutes les machines déjà présentes sur le sous-réseau sont numérotées dans l’ordre
croissant en partant de la plus petite IP disponible.

1. Parmi les deux adresses IP suivantes : 137.254.128.200 et 137.254.128.210, donner l’adresse IP de la
machine déjà connectée au sous-réseau Commerces.

2. Préciser s’il est possible ou non d’ajouter 132 machines sur le sous-réseau Commerces, en justifiant la
réponse.

Partie B : Programmation d’un protocole de routage

Dans la suite de l’exercice, pour simplifier, on ne considère que les routeurs. Les tables de routage
simplifiées sont données dans le tableau suivant, précisant pour chaque routeur en tête de colonne, la passerelle
(c’est-à-dire le routeur à contacter) correspondant au routeur destination en début de ligne.

Source R1 R2 R3 R4 R5 R6 R7

D
es

ti
na

ti
on

R1 R1 R1 R6 R2 R4 R4
R2 R2 R2 R3 R2 R5 R6
R3 R3 R3 R3 R6 R3 R4
R4 R3 R3 R4 R6 R4 R4
R5 R2 R5 R2 R6 R5 R6
R6 R2 R5 R6 R6 R6 R6
R7 R3 R3 R6 R7 R6 R7

Ainsi, selon ce tableau, si le routeur R3 reçoit des données à transmettre au routeur R5, il enverra ses
données au routeur R2.

3. Donner la liste des routeurs par lesquels transite un message envoyé depuis une machine du sous-réseau
Navigation à destination d’une machine du sous- réseau Commerces.

4. Décrire le problème rencontré lorsque qu’une machine du sous-réseau Commerces envoie des données
à destination d’une machine du sous-réseau Navigation.

Pour éviter ce problème, on veut reconfigurer les routeurs en réécrivant leurs tables de routage à l’aide
d’un programme. Pour y parvenir, on modélisera le réseau par un graphe.

Dans toute la suite, les sommets du graphe, qui représenteront les routeurs du réseau, seront décrits par
leur nom (type str) et un graphe sera représenté par un dictionnaire associant à chaque sommet la liste des
sommets qui lui sont liés par une arête.

3



Pour la prochaine question uniquement, on considère le réseau obtenu en se limitant aux routeurs R1,
R2, R3 et R5. On obtient alors le réseau suivant :

•
R1

•
R2

•
R3

•
R5

Figure 2. Schéma du réseau restreint aux routeurs R1, R2, R3 et R5.

5. Donner le dictionnaire correspondant au réseau de la Figure 2.

6. Rappeler le principe d’une fonction récursive.

Pour remplir les tables de routage en évitant le problème soulevé à la question 4, on souhaite utiliser le
protocole RIP, qui minimise le nombre de routeurs par lesquels les paquets transitent. Une première idée est
de construire la liste de tous les chemins possibles reliant ces deux routeurs puis de choisir un chemin le plus
court possible dans cette liste.

On suppose que l’on dispose d’une fonction liste_chemins(graphe, r_depart, r_arrivee) qui prend
en paramètres un graphe, un routeur de départ et un routeur d’arrivée et qui renvoie la liste de tous les
chemins liant les deux routeurs, les chemins étant représentés par les listes des routeurs par lesquels passer.

En notant g le graphe écrit à la question 5, on a donc :

1 >>> liste_chemins(g, 'R1', 'R5'))

2 [['R1', 'R2', 'R5'], ['R1', 'R3', 'R2', 'R5']]

On a besoin de connaître un chemin le plus court possible entre deux routeurs en utilisant le protocole
RIP.

7. Écrire une fonction plus_court_chemin(graphe, r_depart, r_arrivee) qui renvoie une liste repré-
sentant un des plus courts chemins entre les routeurs r_depart et r_arrivee en utilisant le protocole
RIP. On utilisera la fonction liste_chemins définie à la question précédente.

L’agent responsable du réseau consulte un informaticien au sujet de cette fonction. Il lui explique que
cette fonction a un défaut : construire tous les chemins liant deux routeurs peut être long pour un réseau
étendu. En effet, le nombre de chemins augmente de façon quasi exponentielle avec le nombre de routeurs.
Pour remédier à ce problème et améliorer le temps d’exécution de la recherche d’un plus court chemin,
l’informaticien lui propose d’utiliser une autre approche basée sur un parcours en largeur du graphe. En
effet, avec un tel parcours, si un chemin est trouvé, il est forcément de longueur minimale.

8. Compléter la fonction plus_court_chemin_largeur(graphe, r_depart, r_arrivee) suivante qui
traduit l’idée de l’informaticien, réalisant un parcours en largeur et dans laquelle le dictionnaire
dict_chemins associe à un routeur le chemin reliant r_depart à ce routeur.

def plus_court_chemin_largeur(graphe, r_depart, r_arrivee):

dict_chemins = {}

L = [r_depart]

sommets_marques = [r_depart]

dict_chemins[r_depart] = [r_depart]

for r in L:

for s_r in graphe[r]:

if not s_r in sommets_marques:

sommets_marques.append(...)

dict_chemins[s_r] = dict_chemins[r] + [s_r]

if s_r == r_arrivee :

return ...

L.append(s_r)

9. Écrire alors une fonction table_routage(graphe, routeur) qui renvoie la table de routage du routeur
passé en paramètre sous la forme d’un dictionnaire associant à chaque routeur destination la passerelle
orrespondante. On pourra utiliser les fonctions écrites dans les questions précédentes.

4



Partie C : Utilisation du protocole OSPF

Le réseau utilise trois types de connexion :

• Ethernet (E) : débit de 10 megabits par seconde ;

• Fast Ethernet (FE) : débit de 100 megabits par seconde ;

• Fibre (F) : débit de 500 megabits par seconde.

Les types de connexion sont reportés sur la figure du réseau suivante :

•
R1

•
R2

•
R3

•

R4

•
R5

•
R6

•

R7

FE FE

FE

F F
F

F

F

E E

Figure 1. Types de connexions du réseau.

La qualité des liaisons entre les routeurs étant de natures différentes, on décide finalement d’opter pour
un routage utilisant le protocole OSPF (Open Shortest Path First). On rappelle que le protocole OSPF
configure les routeurs en privilégiant les routes dont le coût total est minimal, où le coût des connexions est

donné par la formule suivante : coût =
10

9

débit
, où le débit est exprimé en bits par seconde.

10. Calculer le coût correspondant à chaque type de liaison.

11. Donner la liste des routeurs par lesquels transite un message envoyé depuis le routeur R1 à destination
du routeur R7 en respectant le protocole OSPF.

12. Recopier et compléter la table de routage du routeur R2 toujours en respectant le protocole OSPF.

Destination Suivant
R1
R2
R3
R4
R5
R6
R7

Exercice 3 (8 points)

Cet exercice porte sur l’algorithmique des tableaux, la gestion de bugs, les listes, les piles et la program-

mation orientée objet.

Le but de cet exercice est d’implémenter un algorithme de pseudo-tri, appelé le tri dictatorial.

L’exercice est constitué de trois parties indépendantes.

Pour chaque question, on peut considérer acquis les résultats et les fonctions demandés dans les questions
précédentes, même sans les avoir traitées.

5



Le pseudo-tri dictatorial d’une série d’entiers suit le principe suivant :

• s’il n’y a aucun ou un seul élément, la série est considérée comme triée et n’est donc pas modifiée ;

• sinon :

− on conserve le premier élément de la série ;
− pour chaque élément de la série à partir du deuxième :

• si l’élément est plus petit que le dernier élément conservé alors on l’élimine ;
• sinon on le conserve.

Par exemple, si on considère la série 2, 3, 1, 8 :

• on conserve le 2 qui est le premier élément ;

• le 3 n’est pas plus petit que le dernier conservé (qui est 2) donc on le conserve ;

• le 1 est plus petit que le dernier conservé (qui est 3) donc on l’élimine ;

• le 8 n’est pas plus petit que le dernier conservé (qui est toujours 3) donc on le conserve.

La série triée obtenue après cet algorithme est donc 2, 3, 8.

Partie A

Dans cette partie, on implémente le tri dictatorial en utilisant le type list de Python pour représenter
une série d’entiers.

On souhaite coder une fonction tri_dictatorial qui :

• prend en paramètre une liste d’entiers serie de type list ;

• renvoie une nouvelle liste d’entiers obtenue en suivant l’algorithme présenté en introduction, c’est-à-dire
une liste triée, éventuellement vide, ne contenant que les éléments de serie à conserver ;

• ne modifie pas serie.

Par exemple, si s = [5, 2, 6, 8, 3, 7], l’appel tri_dictatorial(s) devrait renvoyer la liste [5, 6, 8]

sans modifier s.
On remarque que la liste obtenue est en effet triée.

1. Donner le résultat que doit renvoyer l’appel : tri_dictatorial([31, 45, 41, 28, 37, 108, 127, 2, 124, 421

2. Expliquer pourquoi le tri dictatorial n’est pas un algorithme de tri.

Edgar a écrit le programme suivant, qui prétend implémenter le tri dictatorial :

1 def tri_dictatorial(serie):

2 serie_triee = [serie[0]]

3 for i in range(1, len(serie)):

4 if serie[i] >= serie[i - 1]:

5 serie_triee.append(serie[i])

6 return serie_triee

Edgar souhaite tester si sa fonction fait bien ce qu’elle est censée faire.

3. Edgar réalise l’appel tri_dictatorial([8, 2, 9, 6, 12]).
Expliquer pas à pas comment la liste serie_triee se construit après cet appel.

4. Edgar réalise maintenant l’appel tri_dictatorial([]) et obtient l’erreur suivante :

Traceback (most recent call last):

File "tri_edgar.py", line 8, in <module>

tri_dictatorial([])

File "tri_edgar.py", line 2, in tri_dictatorial

result = [serie[0]]

IndexError: list index out of range

Expliquer précisément l’erreur obtenue et proposer une modification du code d’Edgar afin que cet appel
soit conforme à l’algorithme du tri dictatorial décrit en introduction.

6



Dijkstra lors de la réception de son prix Turing en 1972, a notamment déclaré :
« Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate

for showing their absence. »

que l’on peut traduire par
« Tester les programmes peut être un moyen très efficace d’y trouver des bugs, mais c’est un moyen

désespérément inadéquat pour prouver leur absence. »

5. Expliquer pourquoi des tests ne peuvent pas prouver de façon certaine l’absence de bugs d’un pro-
gramme en général.

Edgar décide de procéder à un test supplémentaire et réalise l’appel tri_dictatorial([8, 2, 3, 5, 12]).
La fonction renvoie alors [8, 3, 5, 12] qui n’est pas une liste triée.

6. Expliquer la cause du problème et proposer une modification du code d’Edgar afin de la corriger.

Partie B

Dans cette partie, on implémente le tri dictatorial sur des listes chaînées. Cette fois-ci on va modifier la
liste chaînée initiale au lieu de construire une nouvelle liste.

On dispose d’une classe Maillon :

1 class Maillon:

2 def __init__(self, val, suiv):

3 self.valeur = val

4 self.suivant = suiv

L’attribut suivant doit correspondre à un Maillon (le suivant de self), ou à None si self est le dernier.
On dispose également d’une classe Liste qui implémente une liste chaînée avec pour unique attribut

tete qui est le maillon de tête de la liste chaînée, une instance de Maillon :

class Liste:

def __init__(self, tete):

self.tete = tete

On peut représenter graphiquement une liste chaînée de la manière suivante, avec la barre à hachure
symbolisant la valeur None :

1

m1

0

m0

8

m8

7. Donner des instructions permettant de construire les trois maillons m1, m0 et m8 et la liste chaînée
représentés ci-dessus. On nommera la liste chaînée ma_liste.

8. Indiquer ce que renvoie chacune des instructions ci-dessous :

m1.valeur == 1

m1.suivant.valeur == 8

m1.suivant.suivant == None

m1.suivant.suivant.suivant == None

9. Donner une instruction permettant de transformer ma_liste en la liste chaînée représentée ci-dessous :

1 0 8

On souhaite à présent une fonction tri_dictatorial_chaine qui prend en paramètre une instance de liste
chaînée chaine et qui modifie cette liste chaînée démarrant en suivant l’algorithme du pseudo-tri dictatorial.
La fonction ne renvoie rien.

7



10. Recopier et compléter la fonction tri_dictatorial_chaine ci-dessous.

def tri_dictatorial_chaine(chaine):

maillon = chaine.tete

while maillon.suivant ... :

if maillon.valeur ...

maillon = ...

else:

maillon.suivant = ...

Partie C

Une pile p, éventuellement vide, stocke des éléments entiers qu’on souhaite trier selon le pseudo-tri
dictatorial. À l’issue du tri, on veut que cette pile soit modifiée et ne contienne plus que des éléments triés.

11. Rappeler le principe du fonctionnement d’une pile.

12. Remettre dans l’ordre les lignes ci-dessous afin d’obtenir l’algorithme attendu, en respectant une tabu-
lation lorsque la ligne est à l’intérieur d’un bloc si ou tant que.

— si p n’est pas vide :

• tant que p n’est pas vide :

• tant que p2 n’est pas vide :

• on dépile p, on stocke l’élément obtenu dans la variable dernier_conservé et on l’empile
dans p2 ;

• on crée une pile intermédiaire p2 vide ;

— on dépile p et on stocke l’élément obtenu dans la variable candidat ;

— si candidat est supérieure ou égal à dernier_conservé :

— on dépile p2 et on empile l’élément obtenu dans p ;

• dernier_conservé prend la valeur de candidat et on l’empile dans p2

On suppose maintenant que l’on dispose d’une classe Pile implémentant une structure de pile. L’appel
help(Pile) entraîne l’affichage suivant :

Help on class Pile in module __main__:

class Pile(builtins.object)

| Methods defined here:

|

| __init__(self)

|

Initialize self. See help(type(self)) for accurate

signature.

|

| __str__(self)

|

Return str(self).

|

| depiler(self)

|

| empiler(self, elt)

|

| est_vide(self)

13. Écrire en Python la fonction tri_dictatorial_pile qui prend en paramètre p une instance de Pile

et modifie cette pile afin qu’elle ne conserve que des éléments triés selon le pseudo-tri dictatorial.

8


