Exercice 1 (6 points)
Cet exercice porte sur les bases de données relationnelles et les requétes SQL.
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

e construire des requétes d’interrogation a l'aide de SELECT, FROM, WHERE (avec les opérateurs
logiques AND , OR), JOIN ... ON;

e construire des requétes d’insertion et de mise & jour a 'aide de UPDATE, INSERT, DELETE;

e affiner les recherches & I'aide de ORDER BY.
Pour analyser les résultats et les performances de plusieurs joueurs et joueuses de tennis d’un club, on
élabore une base de données relationnelle. Les données récoltées lors de plusieurs tournois, au fil des saisons,

doivent ensuite permettre de fournir des statistiques. Chacune des requétes demandées devra étre écrite en
langage SQL.

Voici un extrait de la table joueurs dans cette base :

joueurs
id nom prenom | genre
1 | Durand | Enzo 1
2 | Panais Lise 2
3 Alpin Lucas 1
4 | Benard Lisa 2
5 | Benard | Emma 2

e id est de type INT, cet attribut est la clé primaire de cette table;
e nom est de type TEXT;
e prenom est de type TEXT;

e genre est de type INT (1 pour un joueur, 2 pour une joueuse).

1. Expliquer pourquoi 'attribut nom ne peut pas étre choisi comme clé primaire.
2. Ecrire une requéte permettant d’obtenir les noms et prénoms des joueuses du club.

3. Ecrire une requéte permettant d’ajouter dans la table le joueur dont le prénom est Nathan et le nom
est Gervalis, en choisissant une valeur pour l'identifiant id cohérente avec le reste de la base.

On s’intéresse maintenant & la table competitions, répertoriant les différents tournois auxquels ont
participé les joueurs et joueuses du club.

competitions

id nom annee
Open de Tours 2022
Tournoi de Blois | 2023
Open de Toums 2023
Open de Nantes | 2023
Open de Nantes | 2021
Tournoi d’Angers | 2024

| O | W N~

e id est de type INT, il s’agit de la clé primaire de cette table;
e nom est de type TEXT;
e annee est de type INT.

4. Une faute de frappe s’est glissée dans le nom de la compétition d’identifiant 3. Ecrire une requéte
permettant de corriger le nom en Open de Tours.

5. KEcrire une requéte permettant d’obtenir la liste des noms des tournois, ainsi que leur année, en triant
par année croissante.

Le lien entre ces deux tables se fait a I'aide d’une table participe. Celle-ci contient aussi les statistiques
recueillies lors de cette participation.

participe
id_joueur | id_compet | nb_fautes | nb_gagnant | aces
1 1 16 12 1
3 1 14 8 2
1 3 7 15 2
3 3 12 8 1
2 2 15 10 3
2 4 10 17 0
4 4 7 18 4
5 4 11 15 1

id_joueur est de type INT et est une clé étrangére se rattachant a la table joueurs;
id_compet est de type INT et est une clé étrangére se rattachant a la table competitions;
nb_fautes est de type INT et donne le nombre de fautes directes faites durant le tournoi;
nb_gagnant est de type INT et donne le nombre de coups gagnants réalisés durant le tournoi;

aces est de type INT et donne le nombre de services gagnants non touchés par ’adversaire durant le
tournoi;

la clé primaire de la table est constituée du couple des attributs id_joueur et id_compet.

. Ecrire une requéte permettant d’obtenir le nom et le prénom des joueurs et des joueuses ayant obtenu un

nombre de coups gagnants strictement supérieur au nombre de fautes lors d’'une compétition, la méme
personne pouvant apparaitre plusieurs fois si elle a rempli ces conditions lors de plusieurs compétitions.

Ecrire une requéte permettant d’obtenir le nom, le prénom des joueuses et le nom des compétitions
auxquelles elles ont participé en 2023.

On souhaite supprimer de la table joueurs la joueuse Emma Benard qui ne fait plus partie du club.
Déterminer quelle précaution on doit prendre avant de pouvoir le faire. Justifier.

Une joueuse du club, de prénom Agathe et de nom Turion, a participé au Tournoi de Blois en 2024, ou
elle a fait 14 fautes directes, réalisé 15 coups gagnants et servi 2 aces. Ecrire les différentes requétes,
dans le bon ordre, permettant d’insérer cette joueuse et ses résultats dans la base, en choisissant pour
identifiant pour la table joueurs la valeur 7 et pour la table competitions la valeur 5.

Exercice 2 (6 points)

Cet exercice porte sur les réseaux, le routage, les graphes et la programmation.

Un aéroport dispose d’un réseau informatique décomposé en différents sous-réseaux :

Navigation (N) : utilisé principalement par la tour de controle;
Guichets (G) : utilisé aux guichets dans le hall;

Achats (A) : utilisé sur les bornes d’achat placées dans le hall ;
Sécurité (S) : utilisé aux controles de sécurité;

Portes (P) : utilisé au niveau des portes d’accés aux avions ;

Bagages (B) : utilisé par les services qui gérent le transit des bagages;

Commerces (C) : utilisé par tous les commerces.

Le réseau posséde 'architecture suivante, ot R1, R2, R3, R4, R5, R6 et R7 sont des routeurs :

N B

Figure 1. Schéma du réseau.

Partie A : Réseau et adressage

On souhaite ajouter des machines sur le sous-réseau Commerces sur lequel sont déja connectées 207
machines. L’adresse du sous-réseau est 137.254.128.0 et le masque de sous-réseau utilisé est 255.255.255.0
(ladresse IP du réseau est donc 137.254.128.0/24 en notation CIDR). On rappelle que cela signifie que les
adresses IP du réseau ont toutes en commun leurs 24 premiers bits lorsque les adresses IP sont écrites en
binaire.

A part le routeur, toutes les machines déja présentes sur le sous-réseau sont numérotées dans l'ordre
croissant en partant de la plus petite IP disponible.

1. Parmi les deux adresses IP suivantes : 137.254.128.200 et 137.254.128.210, donner ’adresse IP de la
machine déja connectée au sous-réseau Commerces.

2. Préciser sl est possible ou non d’ajouter 132 machines sur le sous-réseau Commerces, en justifiant la
réponse.

Partie B : Programmation d’un protocole de routage

Dans la suite de l’exercice, pour simplifier, on ne considére que les routeurs. Les tables de routage
simplifiées sont données dans le tableau suivant, précisant pour chaque routeur en téte de colonne, la passerelle
(c’est-a-dire le routeur a contacter) correspondant au routeur destination en début de ligne.

Source | R1 | R2| R3 | R4 | R5| R6 | R7

R1 RI | Rl | R6 | R2 | R4 | R4
s R2 |R2 R2 | R3 | R2 | R5 | R6
2| R3 |R3|R3 R3 | R6 | R3 | R4
Z| R1_|R3|R3|R4 R6 | R4 | R4
Z[Rob |R2|R5|R2| R6 R5 | R6
ST R6 |R2| R | R6 | R6 | R6 R6

R7 |R3|R3 | R6 | R7 | R6 | RY

Ainsi, selon ce tableau, si le routeur R3 recoit des données a transmettre au routeur R5, il enverra ses
données au routeur R2.

3. Donner la liste des routeurs par lesquels transite un message envoyé depuis une machine du sous-réseau
Navigation & destination d’une machine du sous- réseau Commerces.

4. Décrire le probléme rencontré lorsque qu’une machine du sous-réseau Commerces envoie des données
a destination d’une machine du sous-réseau Navigation.

Pour éviter ce probléme, on veut reconfigurer les routeurs en réécrivant leurs tables de routage a 'aide
d’un programme. Pour y parvenir, on modélisera le réseau par un graphe.

Dans toute la suite, les sommets du graphe, qui représenteront les routeurs du réseau, seront décrits par
leur nom (type str) et un graphe sera représenté par un dictionnaire associant & chaque sommet la liste des
sommets qui lui sont liés par une aréte.

Pour la prochaine question uniquement, on considére le réseau obtenu en se limitant aux routeurs R1,
R2, R3 et R5. On obtient alors le réseau suivant :

R1
R2 R5

R3
Figure 2. Schéma du réseau restreint aux routeurs R1, R2, R3 et R5.

5. Donner le dictionnaire correspondant au réseau de la Figure 2.
6. Rappeler le principe d’une fonction récursive.

Pour remplir les tables de routage en évitant le probléme soulevé a la question 4, on souhaite utiliser le
protocole RIP, qui minimise le nombre de routeurs par lesquels les paquets transitent. Une premiére idée est
de construire la liste de tous les chemins possibles reliant ces deux routeurs puis de choisir un chemin le plus
court possible dans cette liste.

On suppose que l'on dispose d’une fonction liste_chemins(graphe, r_depart, r_arrivee) qui prend
en parameétres un graphe, un routeur de départ et un routeur d’arrivée et qui renvoie la liste de tous les
chemins liant les deux routeurs, les chemins étant représentés par les listes des routeurs par lesquels passer.

En notant g le graphe écrit & la question 5, on a donc :

1 >>> liste_chemins(g, 'R1', 'R5'))
2 [['R1', 'R2', 'R5'], ['R1', 'R3', 'R2', 'R5']]
On a besoin de connaitre un chemin le plus court possible entre deux routeurs en utilisant le protocole
RIP.

7. Ecrire une fonction plus_court_chemin(graphe, r_depart, r_arrivee) qui renvoie une liste repré-
sentant un des plus courts chemins entre les routeurs r_depart et r_arrivee en utilisant le protocole
RIP. On utilisera la fonction 1iste_chemins définie & la question précédente.

L’agent responsable du réseau consulte un informaticien au sujet de cette fonction. Il lui explique que
cette fonction a un défaut : construire tous les chemins liant deux routeurs peut étre long pour un réseau
étendu. En effet, le nombre de chemins augmente de fagon quasi exponentielle avec le nombre de routeurs.
Pour remédier a ce probléme et améliorer le temps d’exécution de la recherche d’un plus court chemin,
I'informaticien lui propose d’utiliser une autre approche basée sur un parcours en largeur du graphe. En
effet, avec un tel parcours, si un chemin est trouvé, il est forcément de longueur minimale.

8. Compléter la fonction plus_court_chemin_largeur(graphe, r_depart, r_arrivee) suivante qui
traduit I'idée de l'informaticien, réalisant un parcours en largeur et dans laquelle le dictionnaire
dict_chemins associe & un routeur le chemin reliant r_depart a ce routeur.

def plus_court_chemin_largeur(graphe, r_depart, r_arrivee):
dict_chemins = {}
L = [r_depart]
sommets_marques = [r_depart]
dict_chemins[r_depart] = [r_depart]
for r in L:
for s_r in graphe[r]:
if not s_r in sommets_marques:
sommets_marques.append(. . .)
dict_chemins[s_r] = dict_chemins[r] + [s_r]
if s_r == r_arrivee
return ...
L.append(s_r)

9. Ecrire alors une fonction table_routage(graphe, routeur) qui renvoie la table de routage du routeur
passé en paramétre sous la forme d’un dictionnaire associant & chaque routeur destination la passerelle
orrespondante. On pourra utiliser les fonctions écrites dans les questions précédentes.

Partie C : Utilisation du protocole OSPF

Le réseau utilise trois types de connexion :

e Ethernet (E) : débit de 10 megabits par seconde;

e Fast Ethernet (FE) : débit de 100 megabits par seconde;

e Fibre (F) : débit de 500 megabits par seconde.

Les types de connexion sont reportés sur la figure du réseau suivante :

R1
FE Ro FE

R7

Figure 1. Types de connexions du réseau.

La qualité des liaisons entre les routeurs étant de natures différentes, on décide finalement d’opter pour
un routage utilisant le protocole OSPF (Open Shortest Path First). On rappelle que le protocole OSPF

configure les routeurs en privilégiant les routes dont le cotit total est minimal, ol le cotlit des connexions est
9

0
débit
10. Calculer le coiit correspondant a chaque type de liaison.

donné par la formule suivante : cotit = , oll le débit est exprimé en bits par seconde.

11. Donner la liste des routeurs par lesquels transite un message envoyé depuis le routeur R1 & destination
du routeur R7 en respectant le protocole OSPF.

12. Recopier et compléter la table de routage du routeur R2 toujours en respectant le protocole OSPF.

Destination | Suivant
R1
R2
R3
R4
R5
R6
R7

Exercice 3 (8 points)

Cet ezercice porte sur l’algorithmique des tableauz, la gestion de bugs, les listes, les piles et la program-
mation orientée objet.

Le but de cet exercice est d’implémenter un algorithme de pseudo-tri, appelé le tri dictatorial.
L’exercice est constitué de trois parties indépendantes.

Pour chaque question, on peut considérer acquis les résultats et les fonctions demandés dans les questions
précédentes, méme sans les avoir traitées.

Le pseudo-tri dictatorial d’'une série d’entiers suit le principe suivant :
e s’il n’y a aucun ou un seul élément, la série est considérée comme triée et n’est donc pas modifiée ;
e sinon :

— on conserve le premier élément de la série;

— pour chaque élément de la série & partir du deuxiéme :

e si I’élément est plus petit que le dernier élément conservé alors on 1’élimine;
e sinon on le conserve.

Par exemple, si on considére la série 2, 3, 1, 8 :

e on conserve le 2 qui est le premier élément ;

e le 3 n’est pas plus petit que le dernier conservé (qui est 2) donc on le conserve;
e le 1 est plus petit que le dernier conservé (qui est 3) donc on ’élimine;;

e le 8 n’est pas plus petit que le dernier conservé (qui est toujours 3) donc on le conserve.
La série triée obtenue aprés cet algorithme est donc 2, 3, 8.

Partie A

Dans cette partie, on implémente le tri dictatorial en utilisant le type list de Python pour représenter
une série d’entiers.

On souhaite coder une fonction tri_dictatorial qui :

e prend en paramétre une liste d’entiers serie de type list;

e renvoie une nouvelle liste d’entiers obtenue en suivant ’algorithme présenté en introduction, c¢’est-a-dire
une liste triée, éventuellement vide, ne contenant que les éléments de serie & conserver;

e ne modifie pas serie.
Par exemple,sis = [6, 2, 6, 8, 3, 7],l'appel tri_dictatorial(s) devrait renvoyer laliste [5, 6, 8]

sans modifier s.
On remarque que la liste obtenue est en effet triée.

1. Donner le résultat que doit renvoyer 'appel : tri_dictatorial ([31, 45, 41, 28, 37, 108, 127, 2, 124, 4

2. Expliquer pourquoi le tri dictatorial n’est pas un algorithme de tri.

Edgar a écrit le programme suivant, qui prétend implémenter le tri dictatorial :

1 def tri_dictatorial(serie):

2 serie_triee = [serie[0]]

3 for i in range(1l, len(serie)):

4 if serie[i] >= seriel[i - 1]:

5 serie_triee.append(serie[i])
6 return serie_triee

Edgar souhaite tester si sa fonction fait bien ce qu’elle est censée faire.

3. Edgar réalise 'appel tri_dictatorial([8, 2, 9, 6, 12]).
Expliquer pas a pas comment la liste serie_triee se construit aprés cet appel.

4. Edgar réalise maintenant I'appel tri_dictatorial ([]) et obtient ’erreur suivante :

Traceback (most recent call last):
File "tri_edgar.py", line 8, in <module>
tri_dictatorial([])
File "tri_edgar.py", line 2, in tri_dictatorial
result = [serie[0]]
IndexError: list index out of range

Expliquer précisément I’erreur obtenue et proposer une modification du code d’Edgar afin que cet appel
soit conforme & I'algorithme du tri dictatorial décrit en introduction.

Dijkstra lors de la réception de son prix Turing en 1972, a notamment déclaré :

« Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate
for showing their absence. »

que I'on peut traduire par

« Tester les programmes peut étre un moyen trés efficace d’y trouver des bugs, mais c’est un moyen
désespérément inadéquat pour prouver leur absence. »

5. Expliquer pourquoi des tests ne peuvent pas prouver de fagon certaine ’absence de bugs d’un pro-
gramme en général.

Edgar décide de procéder & un test supplémentaire et réalise 'appel tri_dictatorial([8, 2, 3, 5, 12]).
La fonction renvoie alors [8, 3, 5, 12] qui n’est pas une liste triée.

6. Expliquer la cause du probléme et proposer une modification du code d’Edgar afin de la corriger.

Partie B

Dans cette partie, on implémente le tri dictatorial sur des listes chainées. Cette fois-ci on va modifier la
liste chainée initiale au lieu de construire une nouvelle liste.

On dispose d'une classe Maillon :

1 class Maillon:

2 def __init__(self, val, suiv):
3 self.valeur = val
4 self.suivant = suiv

L’attribut suivant doit correspondre & un Maillon (le suivant de self), ou & None si self est le dernier.

On dispose également d’une classe Liste qui implémente une liste chainée avec pour unique attribut
tete qui est le maillon de téte de la liste chainée, une instance de Maillon :

class Liste:

def __init__(self, tete):
self .tete = tete

On peut représenter graphiquement une liste chainée de la maniére suivante, avec la barre & hachure

symbolisant la valeur None :

ml m0 m8

] | et () | ety 8 ——»E

7. Donner des instructions permettant de construire les trois maillons m1, mO et m8 et la liste chainée
représentés ci-dessus. On nommera, la liste chainée ma_liste.

8. Indiquer ce que renvoie chacune des instructions ci-dessous :

ml.valeur == 1

ml.suivant.valeur ==
ml.suivant.suivant == None
ml.suivant.suivant.suivant == None

9. Donner une instruction permettant de transformer ma_liste en la liste chainée représentée ci-dessous :

1 0 — 8 ——PE
t

On souhaite a présent une fonction tri_dictatorial_chaine qui prend en paramétre une instance de liste
chainée chaine et qui modifie cette liste chainée démarrant en suivant I’algorithme du pseudo-tri dictatorial.
La fonction ne renvoie rien.

10. Recopier et compléter la fonction tri_dictatorial_chaine ci-dessous.

def tri_dictatorial_chaine(chaine):
maillon = chaine.tete
while maillon.suivant
if maillon.valeur ...
maillon = ...
else:
maillon.suivant = ...

Partie C

Une pile p, éventuellement vide, stocke des éléments entiers qu’on souhaite trier selon le pseudo-tri
dictatorial. A 'issue du tri, on veut que cette pile soit modifiée et ne contienne plus que des éléments triés.

11. Rappeler le principe du fonctionnement d’une pile.

12. Remettre dans l'ordre les lignes ci-dessous afin d’obtenir ’algorithme attendu, en respectant une tabu-
lation lorsque la ligne est & l'intérieur d’un bloc si ou tant que.

— si p n’est pas vide :

e tant que p n’est pas vide :

e tant que p2 n’est pas vide :

e on dépile p, on stocke I’élément obtenu dans la variable dernier_conservé et on l'empile
dans p2;

e on crée une pile intermédiaire p2 vide;
— on dépile p et on stocke ’élément obtenu dans la variable candidat;
— si candidat est supérieure ou égal a dernier_conservé :

— on dépile p2 et on empile I’élément obtenu dans p;

e dernier_conservé prend la valeur de candidat et on l’empile dans p2

On suppose maintenant que ’on dispose d’une classe Pile implémentant une structure de pile. L’appel
help(Pile) entraine 'affichage suivant :

Help on class Pile in module

class Pile(builtins.object)

| Methods defined here:

|

| __init__(self)

|

Initialize self. See help(type(self)) for accurate

signature.

|

| __str__(self)

|

Return str(self).

_main__:

|
| depiler(self)

|

| empiler(self, elt)
|

|

est_vide(self)

13. Ecrire en Python la fonction tri_dictatorial_pile qui prend en paramétre p une instance de Pile
et modifie cette pile afin qu’elle ne conserve que des éléments triés selon le pseudo-tri dictatorial.

